MATH 31A: Week 1

TA: Ben Szczesny

Discussion Questions

Question 1. Use the formal definition of limit to prove that $\lim _{x \rightarrow 3} 2 x+4=10$.

Solution to Question 1.
We first relate the gap $|f(x)-10|$ to $|x-3|$. We get that $|f(x)-10|=|2 x-6|=2|x-3|$, and we see that the gap is twice a big as $|x-3|$. Hence it follows that for any $\epsilon>0$, if $|x-3|<\epsilon / 2$, then we have that $|f(x)-10|=2|x-3|<2 \times \epsilon / 2=\epsilon$. Hence we have proven that $\lim _{x \rightarrow 3} 2 x+4=10$.

Question 2. In some cases, numerical investigations of limits can be misleading. Consider the function $f(x)=\cos \left(\frac{\pi}{x}\right)$.
(a) Evaluate $f(x)$ at $x= \pm \frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots$,
(b) Does $\lim _{x \rightarrow 0} f(x)$ exist?

Solution to Question 2.

1. Substituting in $x=\frac{1}{2 n}$ gives us $f(1 / 2 n)=1$.
2. Despite the fact that the previous part suggests this function has a limit of 1 (the points are getting closer and closer to zero and they evaluate to 1), this function does not have a limit at $x=0$. We can see this by taking a different sequence of points $x=\frac{1}{3}, \frac{1}{5}, \cdots, \frac{1}{2 n+1}, \cdots$ and evaluating f at these points gives us $f\left(\frac{1}{2 n+1}\right)=-1$. Hence we see that approaching zero a different way gives us a different number and so we see that the limit does not exist.

Question 3. Evaluate the following limits assuming that $\lim _{x \rightarrow 2} f(x)=2$ and $\lim _{x \rightarrow 2} g(x)=5$.
(a) $\lim _{x \rightarrow 2} f(x) g(x)$
(c) $\lim _{x \rightarrow 2} 2 g(x)-3$
(b) $\lim _{x \rightarrow 2} \frac{g(x)}{f(x)}$
(d) $\lim _{x \rightarrow 2} \frac{4 f(x)}{g(x)-2}$

Solution to Question 3.
Note: you should state which limit laws you are using for each step of your solution in the following questions
(a) 10
(b) $5 / 2$
(c) 7
(d) $8 / 3$

Question 4. Give an example where $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exists.

Solution to Question 4.
Consider $f(x)=\frac{1}{x}$ and $g(x)=-\frac{1}{x}$. Then neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exist. Yet,

$$
\lim _{x \rightarrow 0}(f(x)+g(x))=\lim _{x \rightarrow 0} 0=0
$$

Question 5. Determine the points of discontinuity (removable, jump, infinite or none of these) and whether the function is left- or right-continuous.
(a) $f(x)=\left\lfloor\frac{x}{2}\right\rfloor$
(b) $f(x)=\frac{x+1}{4 x-2}$
(c) $f(x)= \begin{cases}x^{2} & \text { for } x \leq 1 \\ 2-x & \text { for } x>1\end{cases}$

Solution to Question 5.

(a) We have that $f(x)=n$ for $x \in[2 n, 2 n+2)$. Hence we see that f has a jump discontinuity at each point $2 n, n \in \mathbb{Z}$. It is also right continuous at these points.
(b) The is a quotient of two continuous functions and so it is continuous for all points where the denominator is not zero. Hence we have that $x=1 / 2$ is a point of discontinuity (it is not defined here). This is an infinite discontinuity.
(c) Since $1=f(1)=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$ we see that f is a continuous function.

Question 6. Suppose that $\lim _{t \rightarrow 3} t g(t)=12$. Show that $\lim _{t \rightarrow 3} g(t)$ exists and is equal to 4 .

Solution to Question 6.

We have by limit laws that $\lim _{t \rightarrow 3} \frac{1}{t}=\frac{1}{3}$. Hence by limit laws we get that

$$
\begin{aligned}
\lim _{t \rightarrow 3} g(t) & =\lim _{t \rightarrow 3} \frac{1}{t} \cdot \operatorname{tg}(t) \\
& =\lim _{t \rightarrow 3} \frac{1}{t} \cdot \lim _{t \rightarrow 3} t g(t) \\
& =\frac{1}{3} \cdot 12 \\
& =4
\end{aligned}
$$

Note, it is incorrect to say that

$$
12=\lim _{t \rightarrow 3} t g(t)=\lim _{t \rightarrow 3} t g(t)=\left(\lim _{t \rightarrow 3} t\right) \cdot\left(\lim _{t \rightarrow 3} g(t)\right)=3 \lim _{t \rightarrow 3} g(t) .
$$

Hence $\lim _{t \rightarrow 3} g(t)=4$. This is incorrect since because we do not know that $\lim _{t \rightarrow 3} g(t)$ exists, we can not use the limit law to say that $\lim _{t \rightarrow 3} t g(t)=\left(\lim _{t \rightarrow 3} t\right) \cdot\left(\lim _{t \rightarrow 3} g(t)\right)$.

