Week 8: Fields

TA: Ben Szczesny

Question 1. Show that the order of a finite field \mathbb{F} cannot be divisible by two distinct primes.

Question 2. Show for a field \mathbb{F} the following are equivalent.

- 1. There exists $\alpha_1, \dots, \alpha_n \in \mathbb{F}$ such that the only subfield of \mathbb{F} containing all the α_i 's is \mathbb{F} itself.
- 2. \mathbb{F} is the fraction field of $\mathbb{Z}[x_1, \cdots, x_n]/\mathfrak{p}$ for some prime ideal \mathfrak{p} .

Question 3. Let $a/b \in \mathbb{Q}$. Show that $\cos(\frac{a}{b}\pi)$ is algebraic over \mathbb{Q} .

Question 4. Given a commutative ring *B* and subring *A*, we say that an element of $x \in B$ is integral over *A* if there exists a monic polynomial $f(t) \in A[t]$ such that f(x) = 0. Note that if *A* and *B* are fields, then this is the same definition for algebraic over. Show that the following are equivalent:

- 1. x is integral over A;
- 2. The subring A[x] of B generated by A and x is a finitely generated A-module;
- 3. There exists a subring C of B containing A[x] and which is finitely generated as an A-module;
- 4. There exists a finitely generated A-submodule M of B such that $xM \subseteq M$ and M is faithful over A[x](That is the map given by the action $A[x] \to Hom(M)$ is injective).

Question 5. Show that any automorphism on the real numbers is identity.