MATH210A: Week 4

TA: Ben Szczesny

Nilpotent and Solvable Groups

We will assume that all groups G are finite. There are a bunch of equivalent definitions for nilpotent groups, but we will use this one.
Definition. A group G is nilpotent if it has a finite central series. That is, a normal series

$$
\{e\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G
$$

such that $G_{i+1} / G_{i} \leq Z\left(G / G_{i}\right)$ or equivalently $\left[G, G_{i+1}\right] \leq G_{i}$.
Note, a normal series of G is one where each subgroup is normal in G. Compare this to a subnormal series where they are just normal in the next consecutive group. We have the following theorem

Theorem 1. The following a equivalent
(a) Group G is nilpotent
(b) If H is a proper subgroup of G, then H is a proper subgroup of $N_{G}(H)$. That is, normalizers grow.
(c) Every Sylow subgroup is normal.
(d) G is the direct product of Sylow subgroups.
(e) If d divides $|G|$, then G contains a normal subgroup of order d.

While we won't go through the proof of this, it's a good exercise to prove this theorem.
Question 1. (Why the heck are they called nilpotent groups anyway?) Consider the map adj ${ }_{g}: G \rightarrow G$ given by $\operatorname{adj}_{g}(x)=[g, x]$. This is called the adjoint map. Show that if G is nilpotent, then there exists some n such that $\operatorname{adj}_{g}^{n}(x)=e$ for all $x, g \in G$.

Question 2. Consider the quarternion group

$$
Q_{8}=\left\langle-1, i, j, k \mid i^{2}=j^{2}=k^{2}=i j k=-1,(-1)^{2}=1\right\rangle .
$$

Is this nilpotent?
Question 3. Prove that G is nilpotent if and only if $G / Z(G)$ is nilpotent.
Question 4. Prove that the dihedral group

$$
D_{n}=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle
$$

is nilpotent if and only if $n=2^{k}$ for $k \in \mathbb{N}$.
Definition. A group G is solvable if it has a subnormal series with each factor group abelian.
Question 5. The derived series of a group G is the normal series

$$
G=G^{(0)} \triangleright G^{(1)} \triangleright \cdots
$$

where $G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right]$. Show that a group is solvable if and only if the derived series eventually terminates at $\{e\}$.

Question 6. Show that nilpotent groups are solvable. Can you think of an example of a solvable group that is not nilpotent?

Question 7. Show that all groups of order <60 are solvable. Hint: A_{5} is the smallest simple nonabelian group.

