Math 210C Homework 9

due 6/6/2013

Problem 1 Using the character tables for cyclic groups, calculate the character tables for each of the three abelian groups of order 8.

Problem 2 Consider the dihedral group $D_n = \langle x, y | x^2 = 1, y^n = 1, xyx = y^{-1} \rangle$ with 2n elements.

(a) Let $\epsilon = e^{2\pi i/n}$, and for $1 \le j < n/2$, let $A_j = \begin{pmatrix} \epsilon^j & 0 \\ 0 & \epsilon^{-j} \end{pmatrix}$ and $B_j = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Show that $\rho_j : D_n \to GL(2\mathbb{C})$, $y^r x^s \mapsto (A_j)^r (B_j)^s$ gives an irreducible representation of G. Show that ρ_i and ρ_j are not equivalent for $i \ne j$.

(b) For n odd, complete the character table by lifting the irreducible characters of $D_n/\langle y \rangle$ to D_n .

(c) For n even, complete the character table by lifting the irreducible characters of $D_n/\langle y^2 \rangle$ to D_n .

Problem 3 Find the character table of the group of the quaternions $\{\pm 1, \pm i, \pm j, \pm k\}$.

Problem 4 Let V be the standard representation of S_3 . Find the decomposition of the representation $V^{\otimes n}$ using character theory.

Problem 5 If V_1 and V_2 are representations of the groups G_1 and G_2 , the tensor product $V_1 \otimes V_2$ is a representation of $G_1 \times G_2$ by $(g_1 \times g_2) \cdot (v_1 \otimes v_2) = g_1v_1 \otimes g_2v_2$. To distinguish this from the case $G_1 = G_2$, we denote this by $V_1 \boxtimes V_2$. Let χ_i be the character of V_i . (a) Show that the character χ of $V_1 \boxtimes V_2$ is given by: $\chi(g_1 \times g_2) = \chi_1(g_1)\chi_2(g_2)$. (b) If V_1 and V_2 are irreducible, show that $V_1 \boxtimes V_2$ is irreducible and every irreducible representation of $G_1 \times G_2$ arises this way.

Problem 6 Show that the dimension of an irreducible representation of G divides the order of G.

Problem 7 Let $G \to GL(V)$ be a finite dimensional irreducible representation of a finite group G in a complex vector space V. Let $\beta_1, \beta_2 : V \times V \to \mathbb{C}$ be a pair of nonzero hermition (not necessarily positive definite) G-invariant forms on V. Prove that there exists a nonzero constant $c \in \mathbb{R}$ such that one has $\beta_2(v_1, v_2) = c \cdot \beta_1(v_1, v_2)$ for any $v_1, v_2 \in V$.