Math 210C Homework 7

due 5/23/2013

Problem 1 Give an example of a faithful representation of D_8 of degree 3.

Problem 2 Let g be an element of a finite group G such that $\rho(g) = Id_V$ for any irreducible complex representation $\rho: G \to GL(V)$. Show that g = e is the identity of the group G.

Problem 3 Let G be an infinite group and F a field. Show that the group ring FG is not semi-simple.

Problem 4 Show that if ρ_i , i = 1, 2, is a representation acting on V_i , then $\rho_1 \otimes \rho_2$ and $\rho_2 \otimes \rho_1$ are isomorphic.

Problem 5 Let ρ be a representation of a group G that is not necessarily finite. Suppose G contains a normal subgroup H of finite index [G:H] not divisible by charF. Show that if $\rho|_H$ is semi-simple, then ρ is semi-simple.

Problem 6 Let p be a prime and C_p the cyclic group of order p.

(a) Describe the Artin-Wedderburn decompositions for kC_p when $k = \mathbb{Q}$.

(b) Describe the Artin-Wedderburn decompositions for kC_p when $k = \mathbb{R}$.

(c) Describe the Artin-Wedderburn decompositions for kC_p when $k = \mathbb{C}$.

Problem 7 Describe the Artin-Wedderburn decomposition of kG, for $G = C_2 \times C_2$ and k of characteristic not 2.

Problem 8 Let S_3 be the group of permutations of 3 letters. Show that kS_3 is isomorphic to $k \times k \times M_2(k)$, whenever $char(k) \neq 2, 3$.

Problem 9 Let V and W be complex representations of G. Show that:

- (a) $\chi_{V\oplus W} = \chi_V + \chi_W$.
- (b) $\chi_{V\otimes W} = \chi_V \cdot \chi_W$.
- (c) $\chi_{V^*} = \bar{\chi}_V$.