Math 210C Homework 6

due 5/16/2013

Problem 1 (Jacobson Density Theorem) Let M be a semi-simple A-module and let $B = End_A(M)$.

(a) Show that M is a left B-module and define $A \to End_B(M)$.

Let $f \in End_B(M)$. Let $x_1, ..., x_n \in M$.

(b) Show there is $a \in A$ such that $f(x_i) = ax_i$ for i = 1, ..., n.

(c) Show that if M is finitely generated over B, then $A \to End_B(M)$ is surjective.

Problem 2 Let A be a ring and $a, b \in A$. Show that the element 1 - ab is invertible if and only if the element 1 - ba is invertible.

Problem 3 Show that for any ring A, one has:

(a) $Rad(M_n(A)) = M_n(Rad(A)).$

(b) Rad(A/Rad(A)) = 0.

Problem 4 For $n \ge 1$, find the Jacobson radical of the ring of upper triangular $n \times n$ -matrices over a field k.

Problem 5 Give an example where the Jacobson Radical is not the intersection of all two-sided maximal ideals.

Problem 6 Let A be an artinian ring (e.g. a finite dimensional algebra). Show that $Rad(A)^n = 0$ for some large enough n.

Problem 7 Let $A \subset \mathbb{Q}$ be the subgroup formed by all rational numbers of the form p/q, where p, q are integers such that gcd(p,q) = 1 and q is odd. Let B be the ring of 2×2 -matrices of the form $\begin{pmatrix} a & u \\ 0 & v \end{pmatrix}$, $a \in A$, $u, v \in \mathbb{Q}$. Find Rad(A) and show that $Rad(B) \subset \begin{pmatrix} Rad(A) & \mathbb{Q} \\ 0 & 0 \end{pmatrix}$. Conclude that $\bigcap_{n \geq 1} Rad(B)^n \neq 0$.

Problem 8 Show that every simple module is indecomposable. Give an example of an indecomposable module which is not simple.

Problem 9 Show that M is indecomposable if and only if its endomorphism ring has no idempotents other than 0 and 1.

Problem 10 In the category of A-modules, define

 $rad_A(X,Y) = \{f \in Hom_A(X,Y) \mid 1_X - gf \text{ is invertible in } End_A(X) \text{ for all } g \in Hom_A(Y,X)\}$ for X and Y A-modules. The Jacobson radical of the category A-Mod is $rad(A-Mod) = \bigcup_{X,Y \in A-Mod} rad_A(X,Y)$. Show that the Jacobson radical is an ideal in A-Mod.