Math 210C Homework 9

Question 1. Suppose L/K is a non-separable field extension. Recall that this implies that the characteristic is p > 0 and that there exists an subextension $K \subset L' \subset L$, where L'/K is separable and L/L' is purely inseparable. Show that there exists a number u > 0 such that $N_{L/K}(x) = N_{L'/K}(x)^{p^u}$, and that $\operatorname{Tr}_{L/K}(x) = 0$, for all $x \in L$.

Question 2. Prove that if M/L/K is a tower of finite field extensions then we have:

- (a) $N_{M/K} = N_{L/K} \circ N_{M/L}$.
- (b) $\operatorname{Tr}_{M/K} = \operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L}$.

Question 3. Decide whether the following polynomials are solvable by radicals.

- (a) $X^5 6X + 3$.
- (b) $X^5 5X + 12$.
- (c) $X^6 4X^3 + 1$.
- (d) $X^6 + 24X 20$.

Question 4 (Criterion for the Solvability of a Quintic). From Problem 7, we see that a quintic polynomial is solvable if and only if its Galois group is contained in the Frobenius group of order 20. Consider the quintic $f(X) = X^5 + AX + B$. Then it is known that the Galois group is contained in the Frobenius group of order 20 if and only if the following degree 6 polynomial g(X) has a rational root:

$$g(X) = X^{6} + 8AX^{5} + 40A^{2}X^{4} + 160A^{3}X^{3} + 400A^{4}X^{2} + (512A^{5} - 3125B^{4})X - 9375AB^{4} + 256A^{6}.$$
 (1)

This reduces the problem of deciding if a quintic is solvable by radicals to a use of the rational root test. Use this test to determine the solvability by radicals for the degree 5 polynomials in Problem 3, as well as the polynomials $X^5 - X - 1$, $X^5 + X - 1$, and $X^5 - 2X + 5$.

* * *

Question 5. Let V be finite dimensional vector space over F and consider an F-bilinear pairing $\beta : V \times V \longrightarrow F$. Show that this pairing is non-degenerate (that is, for $v \in V$, if $\beta(v, w) = 0 \forall w \in V$ then v = 0) if and only if the induced morphism $V \to V^{\vee}$ is an isomorphism ($V^{\vee} = \operatorname{Hom}_{F}(V, F)$ is the dual of V). Question 6. Let L/K be a separable finite extension. When is $\operatorname{Tr}_{L/K}(1) = 0$? Show however that $\operatorname{Tr}_{L/K}$ is non-zero. Deduce that the pairing $(x, y) \mapsto \operatorname{Tr}(xy)$ is non-degenerate.

Question 7. Let p be prime. Show that any solvable subgroup of S_p of order divisible by p is contained in the normalizer of a Sylow p-subgroup of S_p (which turns out to be a Frobenius group of order p(p-1)). Conclude that an irreducible polynomial $f(X) \in \mathbb{Q}[X]$ of degree p is solvable by radicals if and only if its Galois group is contained in the Frobenius group of order p(p-1).

[Hint: Let $G \leq S_p$ be a solvable subgroup of order divisible by p. Then G contains a p-cycle, and hence is transitive on the set $\{1, \ldots, p\}$. Let H < G be the stabilizer in G of the element 1, so H has index p in G. Show that H contains no non-trivial normal subgroups of G. Let $G^{(n-1)}$ be the last non-trivial subgroup in the derived series for G. Show that $H \cap G^{(n-1)} = 1$ and conclude that $|G^{(n-1)}| = p$, so that the Sylow p-subgroup of G (which is also a Sylow p-subgroup of S_p) is normal in G.]

Question 8. Let $F = \mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/5}$, and let E/F be a cyclic Galois extension of degree 5. Prove that there exists an $\alpha \in F$ such that $E = F(\sqrt[5]{\alpha})$. (Hint: Find $\beta \in E$ such that $\sigma(\beta) = \zeta\beta$, where σ is a generator for $\operatorname{Gal}(E/F)$.)