Math 210C Homework 7

Question 1. Let k be an algebraically closed field. Let D be a finite dimensional division k-algebra. Show that D = k. [Hint: Pick $x \in D$ and consider the subring $k[x] \subset D$.] What can you deduce about finite dimensional semi-simple k-algebras?

Question 2. Let p be a prime and C_p be the cyclic group of order p. Describe all finitely generated $\mathbb{F}_p C_p$ -modules.

Question 3. Let G be a p-group and k be a field of characteristic p. Show that kG is a local ring. [Hint: Show that the augmentation ideal $I := \ker(kG \xrightarrow{\epsilon} G)$ is nilpotent.]

Question 4. Consider S_3 the permutation group on 3 letters. Prove:

- (a) The signature defines a one-dimensional representation of S_3 over \mathbb{Q} .
- (b) S_3 acts on the 2-dimensional Q-vector space $M = \{(x_1, x_2, x_3) \in \mathbb{Q}^3 | x_1 + x_2 + x_3 = 0\}.$
- (c) M is an irreducible $\mathbb{Q}S_3$ -module.
- (d) Give all irreducible representations of S_3 over \mathbb{Q} .
- (e) $\mathbb{Q}S_3 \simeq \mathbb{Q} \times \mathbb{Q} \times M_2(\mathbb{Q}).$

* * *

Question 5. Let A be a ring. An *involution* on A is a ring homomorphism $\tau : A^{\text{op}} \to A$ such that $\tau^2 = \text{id}$.

- (a) Show that an involution is the same as an abelian group isomorphism $\tau : A \xrightarrow{\sim} A$ such that $\tau(ab) = \tau(b)\tau(a)$ and $\tau^2 = 1$.
- (b) Show that the identity $A \to A$ is an involution if and only if A is commutative.
- (c) Let G be a group and R be commutative. Show that the group algebra A = RG has a unique R-linear involution such that $\tau(g) = g^{-1}$ for all $g \in G$.
- (d) Let M be a left A-module. Recall the natural structure of right A-module on $M^* := \text{Hom}_A(M, A)$.
- (e) Let A be a ring with involution. Show that the category of left A-modules is isomorphic to the category of right A-modules.

- (f) Let A be a ring with involution. Show that $M \mapsto M^*$ induces a functor from A–Mod to itself.
- (g) Let M be a left RG-module. Describe the dual left RG-module M^* above.
- (h) Compare the two constructions M^* and the dual M^{\vee} (recalled in Question 6), especially when G is finite and R is a field.
- (i) Describe a natural transformation ϖ : id $\longrightarrow (-)^{**}$, as functors from A-Mod to itself.
- (j) Show that ϖ_P is an isomorphism when P is a projective left A-module.

Question 6. Let R be commutative and G be a group. Let M and N be two left RG-modules.

- (a) Show that $M \otimes_R N$ is a RG-module via $g \cdot (m \otimes n) = (gm) \otimes (gn)$.
- (b) Show that $\operatorname{Hom}_R(M, N)$ is a RG-module via $(g\alpha)(m) = g \cdot \alpha(g^{-1} \cdot m)$.
- (c) Explicit the above when N = R with trivial G-action. This defines the dual representation M^{\vee} of M (a.k.a. the contragredient representation).
- (d) Show that there is a natural homomorphism $M^{\vee} \otimes_R N \longrightarrow \operatorname{Hom}_R(M, N)$ and find conditions for this to be an isomorphism.

Question 7. Find adjoints on both sides to the forgetful functor $U : RG-Mod \rightarrow R-Mod$ which forgets the G action and to the functor $T : R-Mod \rightarrow RG-Mod$ in the other direction which equips any R-module with the trivial action.

Question 8.

- (a) Show that there is no group G such that $\mathbb{C}G \simeq M_2(\mathbb{C})$.
- (b) Is there a group G such that $\mathbb{C}G \simeq \mathbb{C} \times M_2(\mathbb{C})$?
- (c) Find equivalent conditions for $\mathbb{C}G$ to be isomorphic to a product of copies of \mathbb{C} .
- (d) Describe $\mathbb{C}G$ for G of order 6.

Question 9. Let $G = C_3 = \langle x \rangle$ be cyclic of order 3. Let $\zeta = e^{2\pi/3} \in \mathbb{C}$.

- (a) Consider the $\mathbb{R}G$ -module $M_1 = \mathbb{C}$ with action $x \cdot m = \zeta \cdot m$. Show that M_1 is isomorphic to $M_2 = \mathbb{C}$ with $x \cdot m = \overline{\zeta} \cdot m$.
- (b) Let $N_1 = \mathbb{C}$ and $N_2 = \mathbb{C}$ be the $\mathbb{C}G$ -modules defined similarly. Are they isomorphic as $\mathbb{C}G$ -modules?
- (c) Decompose $\mathbb{R}G$ and $\mathbb{C}G$ as products of simple rings and explain the above.

Question 10. Let A be a ring and M be an artinian and noetherian left A-module. Let $f: M \to M$ be an A-linear endomorphism. Show that there exists a decomposition $M = M_1 \oplus M_2$ such that $f: M_1 \oplus M_2 \longrightarrow M_1 \oplus M_2$ becomes $\begin{pmatrix} f_1 & 0 \\ 0 & f_2 \end{pmatrix}$ with $f_1: M_1 \to M_1$ nilpotent and $f_2: M_2 \to M_2$ an isomorphism.