Math 210C Homework 5

Question 1. Let k be a field and $A = k[X]/\langle X^2 \rangle$. Find a non-split exact sequence

$$0 \longrightarrow k \longrightarrow M \longrightarrow k \longrightarrow 0$$

for some A-module M. Conclude that M is not semisimple, even though k and k are.

Question 2 (Morita Equivalence). Let A and B be two rings and P be an A, B-bimodule such that P is finitely generated and projective as left A-module and finitely generated and projective as right B-module and the obvious maps $A \to \operatorname{End}_B(P)$ and $B \to \operatorname{End}_A(P)$ are isomorphisms.

- (a) Show that $\operatorname{Hom}_A(P, -)$ and $P \otimes_B -$ induce mutually inverse equivalences between the category A-Mod of left A-modules and the category B-Mod. [Hint: When Q is a finitely generated projective left C-module, show that there is a natural isomorphism $Q^* \otimes_C \xrightarrow{\sim} \operatorname{Hom}_C(Q, -)$, where $Q^* := \operatorname{Hom}_C(Q, C)$ is a right C-module as usual.]
- (b) Show that this equivalence preserves the subcategories of finitely generated modules.
- (c) Let R be a ring. Prove that the categories R-Mod and $M_n(R)$ -Mod are equivalent. Appreciate the vast generalization of Question 3 in Homework 4.

Question 3 (Weyl Algebra). Let $k\langle X, Y \rangle$ denote the noncommutative polynomial ring in two variables. Let $W = k\langle X, Y \rangle / \langle YX - XY - 1 \rangle$. We call W the Weyl algebra. Let $I \subset W$ be a non-zero two-sided ideal.

- (a) Show that every element w of W can be written as $w = f_n Y^n + \dots + f_1 Y + f_0$ where $f_i \in k[X]$ for all i.
- (b) Prove that for all *i*, we have $Y^{i}X = XY^{i} + iY^{i-1}$.
- (c) Prove that if I contains $w = f_n Y^n + \dots + f_1 Y + f_0$, with $f_i \in k[X]$, then $f_n \in I$.
- (d) Prove that for all j, we have $YX^{j} = X^{j}Y + jX^{j-1}$.
- (e) Prove that if I contains $f(X) = a_m X^m + \dots + a_1 X + a_0$, with $a_i \in k$, then $a_m \in I$.
- (f) Show that I = W. Conclude that W is simple.
- (g) Observe that W acts on k[X] by $X \cdot f = Xf$ and $Y \cdot f = \frac{\partial}{\partial X}f$ for any $f \in k[X]$. Show that this defines an injective ring homomorphism $W \hookrightarrow \operatorname{End}_k(k[X])$.

- (h) Show that the left ideals $W \cdot Y \supseteq W \cdot Y^2 \supseteq W \cdot Y^3 \supseteq \cdots$ form a strictly descending chain of left ideals. Conclude that W is neither left artinian nor right artinian.
- (i) Show that $W \not\cong M_n(D)$ for any division algebra D and any integer n.
- (j) Show that $W \simeq \operatorname{End}_B(W \cdot Y)$ where $B := \operatorname{End}_W(W \cdot Y)$.

* * *

Question 4. Let M be a semi-simple (left) R-module and let S be a simple R-module. Let $D = \operatorname{End}_R(S)$. Recall the natural action of D on $\operatorname{Hom}_R(M, S)$. Show that $\operatorname{Hom}_R(M, S)$ is a finite dimensional D-module (vector space) and show that its dimension is the multiplicity of S in M.

Question 5. Let A and B be two rings. Show that any additive equivalence between A–Mod and B–Mod is given as in Problem 2, for a suitable choice of P. [Hint: $B \mapsto$? in A–Mod.]

Question 6. Show that a simple ring R is not necessarily simple as a (left) R-module. Identify the simple rings R which are simple as a (left) R-module.

Question 7.

- (a) For which rings k and which groups G is the ring algebra kG simple?
- (b) Let D be a division algebra. For which (left) D-modules E is the ring $\operatorname{End}_D(E)$ simple?

Question 8. Let A be a ring and $n \ge 1$.

- (a) Determine all two-sided ideals of $M_n(A)$.
- (b) Show that if A is simple then so is $M_n(A)$.