Math 210C Homework 4

Question 1. Let E/F be a field extension. We call *transcendence basis* of E over F a subset $\{x_i\}_{i\in I} \subset E$ such that the x_i are algebraically independent over F and such that E is an algebraic extension of the subfield $F(x_i)$ they generate. Prove the following:

- (a) A transcendence basis is the same thing as a maximal subset of E (with respect to inclusion) which is algebraically independent over F.
- (b) Any field extension E/F has a transcendence basis.
- (c) Any two transcendence bases for E/F have the same cardinality. This cardinality is called the *transcendence degree* of E/F, usually denoted $\operatorname{trdeg}_F(E)$ or $\operatorname{trdeg}(E/F)$.
- (d) What is the transcendence basis (and degree) if E/F is an algebraic extension?

Question 2. Find the transcendence degree of $\operatorname{Frac}(D)$ (the fraction field of D) over \mathbb{R} in the following cases:

- (a) $D = \mathbb{R}[X, Y] / \langle X^2 + Y^2 1 \rangle.$
- (b) $D = \mathbb{R}[X, Y]/\langle Y^2 X^3 \rangle.$
- (c) $D = \mathbb{R}[X, Y] / \langle Y^2 X^2 X^3 \rangle.$
- (d) $D = \mathbb{R}[X, Y, Z] / \langle X^2 + Y^2 + Z^2 1 \rangle.$

Question 3. Describe all finitely generated $M_n(D)$ -modules, for D a division algebra, $n \ge 1$.

Question 4.

- (a) Show that the quaternion algebra $\left(\frac{-1,-1}{\mathbb{R}}\right)$ is a division algebra, hence cannot be isomorphic to $M_2(\mathbb{R})$.
- (b) Show that $\left(\frac{-1,-1}{\mathbb{C}}\right)$ is isomorphic to $M_2(\mathbb{C})$.

* * *

Question 5. Show by example that the statement of the strong Nullstellensatz is false when the ground field is not algebraically closed.

Question 6. For R a domain, let Frac(R) denote the fraction field of R.

- (a) Show that if $A \subset B$ is an integral extension of domains then $Frac(A) \subset Frac(B)$ is algebraic.
- (b) Show that if A is a finitely generated k-algebra which is a domain, then Frac(A) is an algebraic extension of a field of rational functions $k(T_1, ..., T_d)$ for some d.
- (c) Express the above integer d in terms of transcendence degree.

Question 7. Let k be an algebraically closed field and $f_1, \ldots, f_m \in k[X_1, \ldots, X_n]$. Prove that f_1, \ldots, f_m have no common zero in k^n if and only if there exists $p_1, \ldots, p_m \in k[X_1, \ldots, X_n]$ such that $\sum_{i=1}^m p_i f_i = 1$. Show that this fails for k not algebraically closed.

Question 8. What can you say about the center of a simple ring?