Math 210C Homework 3

Question 1. Recall the Artin-Rees Lemma from Homework 5, Question 2 in Math 210B.

(a) Prove that if (A, \mathfrak{m}) is a local noetherian ring, then

$$\bigcap_{n\geq 0}\mathfrak{m}^n=0.$$
 (1)

(b) Prove that if M is a finitely generated A-module with (A, \mathfrak{m}) local noetherian, then

$$\bigcap_{n\geq 0} \mathfrak{m}^n M = 0. \tag{2}$$

(c) If A is a noetherian domain and $I \subsetneq A$ a proper ideal, then

$$\bigcap_{n\ge 0} I^n = 0. \tag{3}$$

Question 2. Let k be a field, and i and j relatively prime positive integers. Find a Noether normalization for the ring $A = k[X, Y] / \langle X^i - Y^j \rangle$.

Question 3. Recall the *p*-adic integers \mathbb{Z}_p .

- (a) Prove that $\hat{\mathbb{Z}}_p$ is a local domain with maximal ideal $p \cdot \hat{\mathbb{Z}}_p$.
- (b) Prove that \mathbb{Z}_p is a DVR and exhibit the valuation.
- (c) Let \mathbb{Q}_p be the field of fractions of $\hat{\mathbb{Z}}_p$. Prove that $\mathbb{Q}_p = \hat{\mathbb{Z}}_p[\frac{1}{p}]$ so that every $x \in \mathbb{Q}_p$ is of the form $x = \frac{a}{p^n}$ with $a \in \hat{\mathbb{Z}}_p$.
- (d) Prove that for $x \in \mathbb{Q}_p$, x can be written as

$$x = \sum_{i=n}^{\infty} a_i p^i \tag{4}$$

with $a_i \in \{0, \ldots, p-1\}$ and $n \in \mathbb{Z}$.

Question 4. Let $D = \mathbb{R}[X, Y] / \langle X^2 + Y^2 - 1 \rangle = \mathbb{R}[x, y]$ and $\mathfrak{m} = \langle x, y - 1 \rangle$.

- (a) Show that $\mathfrak{m} \oplus \mathfrak{m} \simeq D^2$. Hint: Contemplate the 2 × 2 matrix $\begin{pmatrix} x & -y+1 \\ y-1 & x \end{pmatrix}$.
- (b) Show that \mathfrak{m} is not principal but that \mathfrak{m}^2 is.
- (c) Show that $\mathfrak{m} \otimes_D \mathfrak{m} \simeq D$.

* * *

Question 5. Let $A = k[X, Y, Z] / \langle XY - Z^2 \rangle = k[x, y, z].$

- (a) Find a Noether normalization of A.
- (b) Let $\mathfrak{m} = \langle x, y, z \rangle \subset A$. Prove that \mathfrak{m} cannot be generated by two elements. (Hint: Consider the vector space $\mathfrak{m}/\mathfrak{m}^2$.)

Question 6. Let k be algebraically closed. Recall that $Z(I) := \{x \in k^n \mid f(x) = 0 \forall f \in I\}.$

- (a) Show that the sets Z(I) form a closed set topology on the space k^n . We again call this topology the Zariski topology. If $V \subset k^n$ has V = Z(I) for some I, we say V is an *affine variety*, or an *affine algebraic set*.
- (b) Justify the name "Zariski topology" by turning the bijection $k^n \to Max(k[X_1, \ldots, X_n])$ into a homeomorphism for the subspace topology on the latter: Max \subset Spec.
- (c) Let $Y \subset k^n$ be a subset. Define $\mathcal{I}(Y) = \{f \in k[X_1, \ldots, X_n] \mid f(y) = 0 \forall y \in Y\}$. Show that $Z(\mathcal{I}(Y)) = \overline{Y}$ and that $\mathcal{I}(Z(I)) = \sqrt{I}$. Conclude that Z and \mathcal{I} give an inclusionreversing bijection between closed subsets of k^n and radical ideals of $k[X_1, \ldots, X_n]$. (This is another way of stating the Nullstellensatz.)
- Question 7. (a) Let $A \subset B$ be an extension of rings. Let $C = \overline{A}^B \subset B$ be the integral closure of A in B. Let $S \subset A$ be a multiplicative subset. Show that $S^{-1}C$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.
 - (b) Show that a domain D is integrally closed if and only if $D_{\mathfrak{p}}$ is integrally closed for every $\mathfrak{p} \in \operatorname{Spec}(D)$ if and only if $D_{\mathfrak{m}}$ is integrally closed for every $\mathfrak{m} \in \operatorname{Max}(D)$.

Question 8. Show that every ideal of a Dedekind domain *D* is a projective *D*-module.