Math 210C Homework 1

Question 1. For each subset $E \subset A$, let $V(E) = \{ \mathfrak{p} \in \operatorname{Spec}(A) | E \subset \mathfrak{p} \}$. Prove the following:

- (a) If I is the ideal generated by E, then $V(E) = V(I) = V(\sqrt{I})$.
- (b) $V(\{0\}) = \text{Spec}(A) \text{ and } V(\{1\}) = \emptyset.$
- (c) If $\{E_i\}_{i\in\mathcal{A}}$ is a family of subsets of A, then $V\left(\bigcup_{i\in\mathcal{A}} E_i\right) = \bigcap_{i\in\mathcal{A}} V(E_i)$.
- (d) If $\{I_i\}_{i\in\mathcal{A}}$ is a family of ideals of A, then $V\left(\sum_{i\in\mathcal{A}} I_i\right) = \bigcap_{i\in\mathcal{A}} V(I_i)$.
- (e) $V(I \cdot J) = V(I \cap J) = V(I) \cup V(J)$ for any ideals I and J of A.
- (f) The V(I) form the closed subsets of a topology on Spec(A), called the Zariski topology.
- (g) Let $f : A \longrightarrow B$ be a homomorphism of commutative rings, and \mathfrak{q} a prime ideal in B. Then $f^{-1}(\mathfrak{q})$ is a prime ideal in A.
- (h) $\operatorname{Spec}(-)$ defines a contravariant functor from commutative rings to topological spaces.
- (i) If \mathfrak{m} is a maximal ideal in B, then $f^{-1}(\mathfrak{m})$ need not be maximal.

Question 2. For each $s \in A$, denote $D(s) = \{ \mathfrak{p} \in \text{Spec}(A) \mid s \notin \mathfrak{p} \}$. We call these sets *principal open sets*. Show that the principal open sets form a basis of open sets for the Zariski topology, and that the following facts are true:

- (a) $D(s) \cap D(t) = D(st)$.
- (b) $D(s) = \emptyset$ if and only if s is nilpotent.
- (c) D(s) = Spec(A) if and only if s is a unit.
- (d) $D(s) \subset D(t)$ if and only if $\exists n \ge 1$ such that $t \mid s^n$.
- (e) D(s) = D(t) if and only if $\sqrt{As} = \sqrt{At}$.

Question 3.

- (a) Describe the topological space $\operatorname{Spec}(\mathbb{Z})$.
- (b) Describe the topological space $\operatorname{Spec}(\mathbb{Z}[T])$.

Question 4. Let *M* be a finitely generated *R*-module and $I \subset R$ be an ideal (see Question 7 for the definition of Rad(R)).

- (a) Show that $M \otimes_R R/I = 0$ and $I \subset \operatorname{Rad}(R)$ implies M = 0.
- (b) If $N \subset M$ is a submodule and M = IM + N where $I \subset \operatorname{Rad}(R)$, then M = N.

Assume moreover that R is local with maximal ideal \mathfrak{m} and residue field $k = R/\mathfrak{m}$.

- (c) Show that $k \otimes_R M = 0$ implies M = 0.
- (d) Let $x_1, \ldots, x_m \in M$ be elements whose classes $\bar{x}_1, \ldots, \bar{x}_m \in M/\mathfrak{m}M$ form a basis for the k-vector space $M/\mathfrak{m}M$. Show that x_1, \ldots, x_m generate M as an R-module.

* * *

Question 5.

- (a) Suppose R is a ring such that for every $x \in R$, there is an integer n = n(x) > 1 such that $x^n = x$. Prove that every prime ideal of R is maximal.
- (b) Let R be a ring and \mathfrak{p} a prime ideal of R. Suppose I_1, \ldots, I_n are ideals such that $\mathfrak{p} \supset I_1 \cdot I_2 \cdots I_n$. Show there exists a k such that $\mathfrak{p} \supset I_k$.
- (c) Show that in an Artinian ring (e.g. a finite ring or a finite dimensional algebra over a field), there are only finitely many prime ideals and that they are all maximal.

Question 6. Let R be an integral domain and F its field of fractions. Prove that:

$$R = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} R_{\mathfrak{p}} = \bigcap_{\mathfrak{m} \in \operatorname{Max}(R)} R_{\mathfrak{m}}$$
(1)

as subsets of F. [Hint: for $a \in \bigcap_{\mathfrak{m} \in \operatorname{Max}(R)} R_{\mathfrak{m}}$, consider the ideal $I_a = \{d \in R \mid da \in R\}$.]

Question 7. The radical of an ideal $I \subset A$ is defined by $\sqrt{I} = \{x \in A \mid \exists n \text{ with } x^n \in I\}$. The Jacobson radical of A is defined by $\operatorname{Rad}(A) = \bigcap_{\mathfrak{m} \in \operatorname{Max}(A)} \mathfrak{m}$.

- (a) Prove that $\sqrt{I} = \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p}$.
- (b) Show that the nilradical $\sqrt{0}$ is contained in Rad(A) but that equality is far from true.
- (c) Prove that $x \in \text{Rad}(R)$ if and only if 1 xy is a unit for all $y \in A$.

Question 8. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_m \in \operatorname{Spec}(R)$. Suppose I is an ideal such that

$$I \subset \bigcup_{i=1}^{m} \mathfrak{p}_i.$$
⁽²⁾

Prove that $I \subset \mathfrak{p}_k$ for some k.