MATH 210B: HOMEWORK 9

Problem 82. What is the transcendence degree of \mathbb{C} over \mathbb{Q} ?

Problem 83. Let F be a field, and let $A = F[X_1, \ldots, X_n]/(X_1^2 + \cdots + X_n^2)$. Let K be the field of fractions of A. What is the transcendence degree of K over F?

Problem 84. Let F be a field, and let A = F[X, Y, Z]/(X + Y + Z, XYZ - 1). Let K be the field of fractions of A. What is the transcendence degree of K over F?

Problem 85. For any commutative ring A, prove that the Zariski topology on Spec A is actually a topology. That is, prove that \emptyset and Spec A are open, and that open sets are closed under arbitrary union and finite intersection.

Problem 86.

- (a) Prove that construction of the spectrum of a commutative ring gives rise to a functor Spec : **CommRing**^{op} \rightarrow **Top**.
- (b) Prove that Spec is neither full nor faithful.

Problem 87. Let A be a commutative ring. Prove that Spec A is not connected if and only if $A \cong A_1 \times A_2$ for some nonzero rings A_1, A_2 .

Problem 88.

- (a) Let A be an integral domain. Prove that Spec A is irreducible, that is, it cannot be written as a union of two proper closed subsets.
- (b) Give an example of a ring R such that Spec R not irreducible.

Problem 89.

- (a) Describe Spec k[X], where k is a field.
- (b) Describe Spec $k[X]/(X^2)$ and Spec $k[X]_{(X)}$.
- (c) Repeat (a) and (b) for k an algebraically closed field.

Problem 90. Describe Spec \mathbb{Z} and Spec $\mathbb{Z}[X]$.

Problem 91. Describe Spec $\mathbb{R}[X]$ and Spec $\mathbb{R}[X]/(X^2+1)$.