MATH 210B: HOMEWORK 8

Problem 72. Let char F = p and K/F be a finite purely inseparable extension. Compute formulas for the norm $N_{K/F} : K^{\times} \to F^{\times}$ and the trace $\operatorname{Tr}_{K/F} : K \to F$.

Problem 73. Given two finite extensions $F \subset K \subset L$, show that $N_{L/F} = N_{K/F} \circ N_{L/K}$ and $\operatorname{Tr}_{L/F} = \operatorname{Tr}_{K/F} \circ \operatorname{Tr}_{L/K}$. Hint: the separable case was done in class.

Problem 74. Let K/F be a finite field extension.

- (a) Show that $K \times K \to F$, $(x, y) \mapsto \operatorname{Tr}_{K/F}(xy)$ defines a F-bilinear pairing.
- (b) Show that the above pairing is nondegenerate if and only if K/F is separable.

Problem 75. Let $K = \mathbb{Q}(\theta)$, where θ is a root of $X^3 - 2X + 6$. Compute $N_{K/\mathbb{Q}}(\theta)$ and $\operatorname{Tr}_{K/\mathbb{Q}}(\theta)$.

Problem 76. Let $d \equiv 1 \mod 4$ be a squarefree integer. Let $L = \mathbb{Q}(\sqrt{d})$ and let $\alpha = \frac{1+\sqrt{d}}{2} \in L$. Prove that $N_{L/\mathbb{Q}}(\alpha) = (1-d)/4$ and $\operatorname{Tr}_{L/\mathbb{Q}}(\alpha) = 1$.

Problem 77. Let E/\mathbb{Q} be the splitting field of $f(X) = X^6 - 1$. Let $\zeta \in E$ be a primitive element, so $E = \mathbb{Q}(\zeta)$. Compute $N_{E/\mathbb{Q}}(\zeta)$ and $\operatorname{Tr}_{E/\mathbb{Q}}(\zeta)$.

Problem 78. Let F be a field and K/F a finite cyclic extension of degree n with Galois group $G = \langle \sigma : \sigma^n = 1 \rangle$.

- (a) Prove that there exists $z \in K$ such that $\operatorname{Tr}_{K/F}(z) \neq 0$.
- (b) Let $x \in K$ satisfy $\operatorname{Tr}_{K/F}(x) = 0$. For a z as above, let

$$y = \frac{1}{\operatorname{Tr}_{K/F}(z)} \Big[x \cdot z^{\sigma} + (x + \sigma(z)) \cdot z^{\sigma^2} + \dots + (x + \sigma(x) + \dots + \sigma^{n-2}(x)) \cdot z^{\sigma^{n-1}} \Big].$$

Prove that $x = y - \sigma(y)$.

(c) Conclude the additive form of Hilbert's Theorem 90 from the above: for $x \in K$, $\operatorname{Tr}_{K/F}(x) = 0$ if and only if there exists $y \in K$ such that $x = y - \sigma(y)$.

Problem 79. Let F be a field of characteristic p and K/F a finite cyclic extension of degree p^{m-1} with Galois group $G = \langle \sigma : \sigma^{p^{m-1}} = 1 \rangle$, where $m \ge 2$.

- (a) Let $\beta \in K$ such that $\operatorname{Tr}_{K/F}(\beta) = 1$. Show that there exists $\alpha \in K$ such that $\sigma(\alpha) \alpha = \beta^p \beta$.
- (b) Prove that $X^p X \alpha$ is irreducible in K[X].
- (c) If θ is a root of this polynomial, prove $F(\theta)$ is a Galois, cyclic extension of degree p^m over F, and that its Galois group is generated by τ such that $\tau|_K = \sigma$ and $\tau(\theta) = \theta + \beta$.

Problem 80.

- (a) Let K/F be a finite extension of finite fields. Prove that the norm and trace maps are surjective.
- (b) Prove that the norm map $N_{\mathbb{C}/\mathbb{R}}: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$ is not surjective.

Problem 81. Calculate the Galois group of the following polynomials over \mathbb{Q} , then determine which are solvable by radicals.

(a)
$$f(X) = X^5 + X + 1$$

(b) $g(X) = X^5 - X + 1$
(c) $h(X) = X^5 + 20X + 32$
(d) $\varphi(X) = X^6 - 2X^3 - 1$
(e) $\psi(X) = X^6 - X^5 + X^4 - X^3 + X^2 - X + 1$
(f) $\rho(X) = X^6 + X^4 + X + 3$

 $\mathbf{2}$