MATH 210B: HOMEWORK 4

Problem 31. Let K_1 and K_2 be two fields normal over F, and assume that both K_1 and K_2 lie in some larger field extension L over F.

- (a) Prove that the composite field K_1K_2 is normal over F.
- (b) Prove that $K_1 \cap K_2$ is a normal over F.

Problem 32. Determine the splitting field for $X^4 + X^2 + 1$ over \mathbb{Q} . What is its degree?

Problem 33. Determine the splitting field for $X^8 - 1$ over \mathbb{Q} . What is its degree?

Problem 34. Determine the splitting field for $X^8 - 1$ over \mathbb{F}_5 . What is its degree?

Problem 35.

- (a) Prove that $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ is a normal, separable extension over \mathbb{Q} .
- (b) Let $K = \mathbb{Q}(\sqrt[3]{2} + \sqrt[3]{3})$. Prove that K/\mathbb{Q} is not normal, then compute the normal closure L of K and find the degree of L over \mathbb{Q} .

Problem 36. Let L/F be a field extension which is separable but not normal. Prove that there exists a maximal subextension $L \supset K \supset F$ such that K/F is normal. Interpret this result in the language of groups by using Galois theory.

Problem 37. Let G be a group and H < G a subgroup. Show that there is a maximal subgroup K < H such that $K \triangleleft G$ is normal.

Problem 38. Let L/K be any extension. Prove that the following are equivalent.

- (a) Every $x \in L \setminus K$ has a non-separable minimal polynomial.
- (b) char K = p > 0 and every $x \in L$ has some iterated *p*th power in K, that is, $x^{p^n} \in K$ for n >> 0. Such $x \in L$ are called *purely inseparable* over K.
- (c) char K = p > 0 and every $x \in L$ has a minimal polynomial of the form $T^{p^n} a$ for some $a \in K$.
- (d) $[L:K]_{sep} = 1.$
- (e) L is generated by purely inseparable elements.

In this case, L/K is called *purely inseparable*.

Problem 39. Let L/F be a finite extension.

(a) Prove that there exists a maximal separable subextension K/F contained in L.

MATH 210B: HOMEWORK 4

- (b) Prove that L/K is purely inseparable.
- (c) Prove that the set of purely inseparable elements in L over F form a subfield.

Problem 40. Let p be prime, and consider $F = \mathbb{F}_p(X)$ the field of rational functions. Let L be the splitting field of $T^{pq} - X$ for q coprime to p.

- (a) Prove that $T^{pq} X$ is irreducible in $\mathbb{F}_p(X)$.
- (b) Calculate K the maximal separable subextension, and prove that L/K is purely inseparable (explicitly).

Problem 41. Recall that a field is called *perfect* if every extension of that field is separable.

- (a) Prove that fields of characteristic 0 are perfect.
- (b) Let F be a field of characteristic p > 0. Prove that the map $\varphi : F \to F$, $\varphi(x) = x^p$, is a field endomorphism.
- (c) Prove that F is perfect if and only if φ is an automorphism.

Problem 42. Prove that \mathbb{F}_{49} is perfect by using the Frobenius automorphism.

2