Math 210B Homework 8

Question 1. Let E/F be an algebraic extension. Recall that the set of all elements in E which are separable over F is a subfield of E containing F, called the *maximal separable* subextension in E/F. In characteristic zero, this coincides with E itself.

On the other hand, in characteristic p > 0, an element $a \in E$ is called *purely inseparable* over F if $a^{p^n} \in F$ for some $n \ge 0$. A finite extension E/F is called *purely inseparable* if all elements in E are purely inseparable over F.

- (a) Show that if $a \in E$ is separable and purely inseparable over F, then $a \in F$.
- (b) Show that a finite extension E of F is purely inseparable over the maximal separable subextension in E/F. That is, any algebraic extension E/F decomposes as E/L and L/F with E/L purely inseparable and L/F separable.

Question 2.

- (a) Show that any finite extension of a finite field is normal.
- (b) Show that any finite extension of a finite field is separable.

Question 3. Show that in a finite field F with q elements, every $x \in F$ is a root of $X^q = X$. ("Recall by anticipation" that any finite subgroup of the units F^{\times} of a field must be cyclic.)

Question 4. Let p be a prime number and $n \ge 1$. Let $q = p^n$. Fix $\overline{\mathbb{F}}_p$ an algebraic closure of \mathbb{F}_p . Let \mathbb{F}_q be the set of roots of the polynomial $T^q - T$ in $\overline{\mathbb{F}}_p$.

- (a) Compute the derivative of the polynomial $T^q T \in \mathbb{F}_p[T]$.
- (b) Show that \mathbb{F}_q has exactly q elements.
- (c) Show that \mathbb{F}_q is a subfield of $\overline{\mathbb{F}}_p$. [Hint: Frobenius.]
- (d) Show that there exists exactly one finite field for every number $q = p^n$.

Question 5. Prove that the polynomial $X^4 + 1$ is reducible in $\mathbb{F}_p[X]$ for every prime p.

* * *

Question 6. Let p be a prime integer, $n, m \ge 0$. Find the smallest k such that the finite field \mathbb{F}_{p^k} contains two subfields isomorphic to \mathbb{F}_{p^n} and \mathbb{F}_{p^m} .

Question 7. First explain why $\mathbb{F}_3[X]/(X^2-2)$ is isomorphic to $\mathbb{F}_3[X]/(X^2-2X-1)$. Then find an explicit isomorphism:

$$\phi: \mathbb{F}_3[X]/(X^2 - 2) \longrightarrow \mathbb{F}_3[X]/(X^2 - 2X - 1).$$
(1)

Question 8. Show that for any finite field \mathbb{F}_q and $n \in \mathbb{N}$ there is an irreducible polynomial over \mathbb{F}_q of degree n.

Question 9.

- (a) Find the degree of the splitting field of the polynomial $X^7 1$ over the finite field \mathbb{F}_5 .
- (b) Find the degree of the splitting field of the polynomial $X^{171} 1$ over the finite field \mathbb{F}_7 .

Question 10. Let E/F and K/F be two finite field extensions of F contained in a larger extension L, and consider the composite field M = EK inside L. Show that if E/F is separable then so is M/K.