Math 210B Homework 7

Question 1. Let E/F and K/F be two finite field extensions of F contained in a larger extension L, and consider the composite field M = EK over F. Show that if E/F is normal then so is M/K.

Question 2.

- (a) Let $K = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Prove that K/\mathbb{Q} is a normal, separable extension.
- (b) Let $K = \mathbb{Q}(\sqrt[4]{2})$. Prove that K/\mathbb{Q} is not a normal extension. Let M be the normal closure of K. Find M and $[M:\mathbb{Q}]$.

Question 3. Let K/F be a separable quadratic extension.

- (a) Prove that if $\operatorname{char}(F) \neq 2$, then $K = F(\alpha)$ for some $\alpha \in K$ such that $\alpha^2 \in F$.
- (b) Prove that if char(F) = 2, then $K = F(\alpha)$ for some $\alpha \in K$ such that $\alpha^2 + \alpha \in F$.

Question 4. Let ζ_n be a primitive n^{th} root of unity. Recall that $X^n - 1 = \prod_{k=1}^n (X - \zeta_n^k)$.

- (a) Prove that $\zeta_n^{n/d}$ is a primitive d^{th} root of unity.
- (b) Use the above equation to show that $X^n 1 = \prod_{d|n} \Phi_d(X)$, where

$$\Phi_d(X) = \prod_{1 \le j \le d, \gcd(j, d) = 1} (X - \zeta_n^{j \cdot (n/d)}). \tag{1}$$

Use this to prove the number theory identity

$$n = \sum_{d|n} \varphi(d). \tag{2}$$

Here $\varphi(m) = \#\{k \mid 1 \le k \le m, \gcd(k, m) = 1\} = |(\mathbb{Z}/m\mathbb{Z})^{\times}|$ is the Euler function.

- (c) Use part (b) to find $\Phi_6(X)$, $\Phi_{10}(X)$, and $\Phi_{12}(X)$.
- (d) Use part (b) to find Φ_{p^n} , where p is a prime integer.

Question 5. Let F be a field of characteristic p > 0 and E/F an extension with [E:F] relatively prime to p. Show that E/F is a separable extension.

Question 6. Prove that d|n if and only if $X^d - 1$ divides $X^n - 1$.

Question 7. Prove that the property of normality is not transitive by finding a tower of fields $F \subset E \subset K$ with E/F normal, K/E normal, but K/F not normal.

Question 8. Let K be a field of char p > 0.

- (a) Show that $f: K \to K$ defined by $x \mapsto x^p$ is a field homomorphism. It is called the Frobenius homomorphism.
- (b) Show that K is a perfect field if and only if f is an automorphism.