Math 210B Homework 5

Question 1. Let R be noetherian and $I \subset R$ an ideal. An *I*-filtration of an R-module M

$$M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_n \supset \cdots$$

is a sequence of submodules such that $I \cdot M_n \subset M_{n+1}$.

- (a) Show that if R is noetherian then so is the (graded) ring $S := R \oplus I \oplus I^2 \oplus \ldots$ (make the ring structure of S explicit).
- (b) Let $\{M_n\}_{n\geq 0}$ be an *I*-filtration of M. Show that $M_S := M \oplus M_1 \oplus M_2 \oplus ...$ has a natural structure of (graded) S-module.

An *I*-filtration as above is (I)-stable if there exists n_0 such that $M_{n+1} = I \cdot M_n$ for all $n \ge n_0$.

(c) Show that the above M_S is finitely generated over S if and only if M is finitely generated over R and the *I*-filtration $\{M_n\}_{n>0}$ is stable.

Question 2 (Artin-Rees Lemma). Let R be a noetherian ring and $I \subset R$ be an ideal. Let M be a finitely generated R-module and $N \subset M$ be a submodule.

- (a) Let $\{M_n\}_{n\geq 0}$ be a stable *I*-filtration of *M*. Show that $N_n := N \cap M_n$ defines a stable *I*-filtration of *N*.
- (b) Show that there exists an integer k such that $I^n M \cap N = I^{n-k}(I^k M \cap N)$ for all $n \ge k$.

Question 3.

- (a) Prove that the \mathbb{Z} -module \mathbb{Z} is notherian but not artinian.
- (b) Prove that the \mathbb{Z} -module $M = \bigcup_{n=1}^{\infty} (p^{-n} \mathbb{Z}/\mathbb{Z}) \subset \mathbb{Q}/\mathbb{Z}$ is artinian but not noetherian.

Question 4.

- (a) Find an example of a nontrivial field extension K/F with isomorphic fields K and F.
- (b) Find an example of an infinite algebraic extension.

* * *

Question 5.

- (a) Let K/F be a field extension, $\alpha, \beta \in K$. Show that if $[F(\alpha) : F]$ and $[F(\beta) : F]$ are relatively prime, then $[F(\alpha, \beta) : F] = [F(\alpha) : F] \cdot [F(\beta) : F]$.
- (b) Let K/F be a field extension, $\alpha, \beta \in K$. Prove that the extension $F(\alpha, \beta)/F(\alpha+\beta, \alpha\beta)$ is algebraic.

Question 6. Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3}) = \mathbb{Q}(\sqrt{2},\sqrt{3})$. Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q} .

Question 7. Let X be a variable over a field F, and $Y = \frac{X^2}{X-1}$. Find [F(X) : F(Y)].

Question 8. Let K/F be an algebraic extension and let R be a *ring* contained in K and containing F. Show that R is a subfield of K containing F.