Math 210B Homework 4

Question 1. Let F be a field and let $A \in M_n(F)$. Consider the ring R = F[X] and view A as an element of $M_n(R)$. Consider the matrix $X \cdot I_n - A$ in $M_n(R)$ as a linear endomorphism of R^n . Find π such that the following sequence of R-modules is exact

$$0 \longrightarrow R^n \xrightarrow{(X \cdot I_n - A)} R^n \xrightarrow{\pi} V \longrightarrow 0$$

where $V = F^n$ is the *R*-module characterized by $X \cdot v = A \cdot v$ for any $v \in F^n$.

Question 2. Let $R = \mathbb{Q}[X]$ and let M be the submodule of R^2 generated by the elements $(1 - 2x, -x^2)$ and $(1 - x, x - x^2)$. Express R^2/M as a direct sum of cyclic modules (i.e., modules generated by one element).

Question 3. Let R be a commutative ring with unit and let M be a finitely generated R-module. Suppose $f: M \longrightarrow M$ is an R-linear endomorphism which is surjective. Show that f is an isomorphism. (Hint: View M as an R[X]-module and use Nakayama).

Question 4. Prove there are no 3×3 matrices A over \mathbb{Q} with $A^8 = I$ but $A^4 \neq I$.

* * *

Question 5. Let F be a field. Prove that every $A \in M_n(F)$ is similar to its transpose.

Question 6. Find the Jordan canonical form of the linear operator in \mathbb{C}^3 given by

Question 7. Let $A \in M_n(F)$. Prove that the minimal polynomial of A has the same irreducible divisors as the characteristic polynomial of A.

Question 8. Suppose M is a finitely generated, artinian R-module, where R is a commutative ring with 1. Suppose $f: M \longrightarrow M$ is an R-module homomorphism which is injective. Show that f is an isomorphism. (Hint: Consider a descending chain of cokernels.)