Math 210B Homework 3

Question 1. Suppose $G = \langle x, y, z, w \rangle$, considered as an additive group. Let a = x - z + 2w, b = x - y + w, c = 3x - y - 2z + 5w, and d = 2x - 2y + 4w. If $H = \langle a, b, c, d \rangle$, determine the structure of G/H.

Question 2. Find all similarity classes of 4×4 matrices A over \mathbb{Q} such that $A^2 \neq \pm A$ and $A^2 \neq I$ but $A^3 = A$.

Question 3. For a matrix $A \in M_n(F)$, F a field, let $C_A = \{B \in M_n(F) | AB = BA\}$.

- (a) Find the minimum dimension m of C_A among all possible A.
- (b) Determine the invariant factors of all A such that dim $C_A = m$.

Question 4. Let p be a prime, let $S = \{p^n | n \ge 0\}$, and let $T = \mathbb{Z} \setminus p\mathbb{Z}$.

- (a) Classify all finitely generated modules over $S^{-1}\mathbb{Z}$.
- (b) Classify all finitely generated modules over $T^{-1}\mathbb{Z}$.

* * *

Question 5. Classify all finitely generated modules over $\mathbb{Z}/n\mathbb{Z}$.

Question 6. Find the invariant factors of the factor group \mathbb{Z}^3/N , where N is generated by (-4, 4, 2), (16, -4, -8), and (8, 4, 2).

Question 7. Let \mathbb{F}_2 be the field of 2 elements and let $R = \mathbb{F}_2[X]$. List, up to isomorphism, all *R*-modules with exactly 8 elements.

Question 8. Find the rational canonical form (or Frobenius normal form, i.e. block-diagonal with companion matrices on the diagonal), of the linear operator in \mathbb{R}^3 given by the matrix

$$\left(\begin{array}{rrr} -2 & 0 & 0\\ -1 & -4 & -1\\ 2 & 4 & 0 \end{array}\right).$$