Math 210B Homework 2

Question 1.

(a) Let $R \to S$ be a homomorphism of commutative rings. Let $I \subset R[X_1, ..., X_n]$ be an ideal. Show that there is an isomorphism of S-modules (actually of rings, see Q. 9):

$$S \otimes_R (R[X_1, ..., X_n]/I) \cong S[X_1, ..., X_n]/I \cdot S[X_1, ..., X_n].$$
(1)

(b) Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \times \mathbb{C}$ as \mathbb{R} -vector spaces (actually, as rings). Deduce that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are two non-isomorphic \mathbb{R} -vector spaces.

Question 2. Let $R = \mathbb{Z}[X]$. Show that there is a short exact sequence of *R*-modules

$$0 \longrightarrow R \xrightarrow{\cdot X} R \xrightarrow{\pi} \mathbb{Z} \longrightarrow 0.$$

What is the structure of *R*-module on \mathbb{Z} and what is π ? Does the above sequence split? Does it split as a sequence of abelian groups?

Question 3. Let $\{M_i\}_{i \in I}$ be a collection of *R*-modules.

- (a) Show that the coproduct $\coprod_{i \in I} M_i$ is projective if and only if each M_i is.
- (b) Show that the product $\prod_{i \in I} M_i$ is injective if and only if each M_i is.
- (c) Prove that $M \oplus N$ is a projective (resp. injective) if and only if both M and N are.

Question 4. Show that projective modules are flat. [Hint: Show that free modules are flat.]

Question 5. Let R be a commutative ring and M an R-module. Let $M^* = \text{Hom}_R(M, R)$ be the *dual* R-module. Recall the R-module structure on M^* .

- (a) Show that there is a natural R-homomorphism $\iota_M: M \to M^{**}$ as in linear algebra.
- (b) Show that ι_M is an isomorphism when M is finitely generated projective.
- (c) Let $\operatorname{Bilin}_R(M)$ be the *R*-module of *R*-bilinear maps $\beta : M \times M \longrightarrow R$. Show that there is an isomorphism between $\operatorname{Bilin}_R(M)$ and $\operatorname{Hom}_R(M, M^*)$.
- (d) Show that under the isomorphism of (c), the endomorphism $(-)^t$ of $\operatorname{Bilin}_R(M)$ defined by $\beta^t(x,y) = \beta(y,x)$ corresponds to the endomorphism $(-)^t$ of $\operatorname{Hom}_R(M,M^*)$ defined by $\varphi^t := \varphi^* \circ \iota_M : M \xrightarrow{\iota_M} M^{**} \xrightarrow{\varphi^*} M^*$. Both generalize transposition of linear algebra.

Question 6. Prove that in the category of vector spaces over a field k, any object is both projective and injective.

Question 7. Prove that \mathbb{Q} is not a projective \mathbb{Z} -module.

Question 8. Prove that every $\mathbb{Z}/6\mathbb{Z}$ -module is projective and injective. Find a $\mathbb{Z}/4\mathbb{Z}$ -module that is neither projective nor injective.

Question 9. Let R be a commutative ring and let A and B be two R-algebras (a ring C is an R-algebra if there exists a ring homomorphism $R \to C$ whose image is in the center of C; one can then view C as an R-module as usual.) Show that $A \otimes_R B$ becomes a ring such that $(a \otimes b) \cdot (a' \otimes b') = (aa') \otimes (bb').$

Prove for instance that $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$ as rings, where $d = \gcd(m, n)$. Show also that the isomorphism (1) in Question 1 is an isomorphism of rings.

Question 10. Find a flat module which is not projective.