MATH 210A HOMEWORK 9

Problem 1.

- (a) Let D be a domain and c ∈ D. Show that a polynomial f(X) = ∑_{i=0}ⁿ a_iXⁱ ∈ D[X] is irreducible in D[X] if and only if f(X c) = ∑_{i=0}ⁿ a_i(X c)ⁱ ∈ D[X] is irreducible.
 (b) For each prime integer p, prove that the cyclotomic polynomial X^{p-1} + X^{p-2} + ··· +
- X + 1 is irreducible in $\mathbb{Z}[X]$. (Hint: Use Eisenstein and part (a).)

Problem 2.

- (a) Prove that $X^2 + Y^2 1$ is irreducible in $\mathbb{Q}[X, Y]$.
- (b) Prove that $X^5 + Y^5 + Z^5$ is irreducible in $\mathbb{C}[X, Y, Z]$.
- (c) Determine whether or not the polynomial $2X^5 6X + 6$ is irreducible in the following rings: $\mathbb{Z}[X]$, $(S^{-1}\mathbb{Z})[X]$ where $S = \{2^n \mid n \ge 0\}$, $\mathbb{Q}[X]$, $\mathbb{R}[X]$, and $\mathbb{C}[X]$.
- (d) Determine all $n \in \mathbb{Z}$ such that the polynomial $X^3 + nZ + 2$ is irreducible in $\mathbb{Q}[X]$.

Problem 3.

- (a) Given a polynomial $f \in R[X]$ and $c \in R$, show that $f \equiv f(c) \mod (X c)$.
- (b) Show that f has a root at c if and only if f(c) = 0.
- (c) When R is a domain, show that $f \in R[X]$ of degree d has at most d roots.
- (d) When R is a domain, show that f has a multiple root at c iff f(c) = 0 and f'(c) = 0(where f' is the usual derivative).

Problem 4. Show that the ring $R = \mathbb{Z}[x_1, x_2, \ldots] = \mathbb{Z}[x_i]_{i \in \mathbb{N}}$ is a UFD. Is it noetherian?

Problem 5.

- (a) Suppose R is notherian and $I \subset R$ is an ideal of R. Prove that R/I is notherian.
- (b) Suppose R is artinian and $I \subset R$ is an ideal of R. Prove that R/I is artinian.
- (c) If R[x] is noetherian, does R necessarily have to be noetherian as well?

Problem 6.

- (a) Let R be a noetherian ring and S a central multiplicative subset. Prove that $S^{-1}R$ is noetherian.
- (b) Let R be an artinian ring and S a central multiplicative subset. Prove that $S^{-1}R$ is artinian.

Problem 7. Prove that any artinian integral domain is a field.

Problem 8. Give two examples of noetherian rings that are not artinian.

Problem 9. Let R be the ring of 2×2 matrices $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ such that $a \in \mathbb{Z}$ and $b, c \in \mathbb{Q}$. Prove that R is right noetherian but not left noetherian.

Problem 10. Let R be the ring of 2×2 matrices $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ such that $a \in \mathbb{Q}$ and $b, c \in \mathbb{R}$. Prove that R is right artinian but not left artinian.