MATH 210A HOMEWORK 4

Problem 1. (The Alternating Group). We define the group A_n to be the kernel of the signature homomorphism sgn : $S_n \to \{\pm 1\}$ and we call it the *alternating group on n letters*.

- (a) Show that A_n is a normal subgroup in S_n and compute its order.
- (b) Show that $S_n = A_n \rtimes \mathbb{Z}/2$.
- (c) Show that, for $n \ge 3$, A_n is generated by the 3-cycles $(i \ j \ k)$ in S_n . (Hint: A_n is generated by products of two transpositions.)
- (d) Show that A_n , for $n \ge 4$, and S_n , for $n \ge 3$, have trivial centers.

Problem 2. Let G be a group. The commutator of two elements $g, h \in G$ is $[g, h] := g \cdot h \cdot g^{-1} \cdot h^{-1}$. The commutator subgroup [G, G] is the subgroup generated by all commutators.

- (a) Prove that $[S_n, S_n] = A_n$ for $n \ge 3$. (Hint: Recall that A_n is generated by the 3-cycles.)
- (b) Prove that $[GL_n(\mathbb{C}), GL_n(\mathbb{C})] = SL_n(\mathbb{C})$ for $n \geq 3$. (Hint: Recall that $SL_n(\mathbb{C})$ is generated by the elementary matrices $E_{ij}(\lambda)$ which have 1's on the diagonal, λ in the i, j spot (where $i \neq j$), and 0 everywhere else.)
- (c) Show that the commutator subgroup gives rise to a functor $\mathbf{Grps} \to \mathbf{Grps}$, and that [G, G] is a characteristic subgroup of G (invariant under any automorphism of G).

Problem 3. Find a left adjoint functor to the inclusion functor from Ab to Grps.

Problem 4. Let $n \ge 2$ be an integer. Show that the only subgroup of index 2 in S_n is A_n .

Problem 5. Let H and K be subgroups of finite index of a group G. Then $[G : H \cap K]$ is finite and $[G : H \cap K] \leq [G : H][G : K]$. Furthermore, $[G : H \cap K] = [G : H][G : K]$ if and only if G = HK.

Problem 6.

- (a) Show that Q_8 is an extension of $\mathbb{Z}/2\mathbb{Z}$ by $\mathbb{Z}/4\mathbb{Z}$.
- (b) Recall that D_8 , the dihedral group of order 8, is a split extension of $\mathbb{Z}/2\mathbb{Z}$ by $\mathbb{Z}/4\mathbb{Z}$.
- (c) Show that a non-abelian group G of order 8 is necessarily an extension of $\mathbb{Z}/2\mathbb{Z}$ by $\mathbb{Z}/4\mathbb{Z}$.
- (d) Show that a non-abelian group of order 8 is isomorphic to either D_8 or Q_8 .
- (e) Describe the isomorphism clases of groups of order 8.

Problem 7. (The 5-Lemma). Consider the following diagram of groups:

$$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow G_4 \longrightarrow G_5$$
$$\downarrow^{\simeq} \qquad \downarrow^{\alpha} \qquad \downarrow^{\simeq} \qquad \downarrow^{\simeq}$$
$$H_1 \longrightarrow H_2 \longrightarrow H_3 \longrightarrow H_4 \longrightarrow H_5$$

where each square commutes and each row is an exact sequence (ker = im at each group).

- (a) Prove that the morphism $\alpha: G_3 \to H_3$ is an isomorphism as well.
- (b) Can we weaken the hypotheses on the (external) vertical homomorphisms?