
MATH 210A HOMEWORK 2

Problem 1. Let C be a category, I a small category and F : I → C a functor.

(a) Prove that limi∈I F (i) is characterized by the existence, for every T ∈ C, of a natural
bijection

MorC(T, lim
i∈I

F (i)) ' lim
i∈I

MorC(T, F (i)).

(b) Similarly, colimi∈I F (i) is characterized by the existence, for every T ∈ C, of a natural
bijection

MorC(colimi∈I F (i), T ) ' lim
i∈I

MorC(F (i), T ).

Problem 2. Let C be a category, I a small category, and let ∆I(−) : C → CI denote the
constant diagram functor.

(a) Prove that C admits I-shaped limits if and only if the constant diagram functor ∆I
admits a right adjoint limI(−) : CI → C.

(b) Prove that C admits I-shaped colimits if and only if the constant diagram functor
∆I admits a left adjoint colimI(−) : CI → C.

Definition. A functor F : C → D is continuous if it preserves all small limits that exist in
C and is cocontinuous if it preserves all small colimits that exist in C.

Problem 3. Prove that right adjoints are continuous while left adjoints are cocontinuous.

Problem 4. Let X be a fixed object in a category C.
(a) Consider a new category C ↓ X whose objects are the morphisms f : Y → X (for

Y ∈ Ob(C)) and where a morphism between f : Y → X and g : Z → X is a morphism
h : Y → Z in C such that g◦h = f . Show that C ↓ X is a category. This is sometimes
called the comma category of C over X.

(b) Let C ↓ X be as above. Prove that the product of two objects f : Y → X and
g : Z → X in C ↓ X is just the fiber product of Y and Z over X in C. Explicitly
describe the fiber product (“pull-back”) in the categories Sets, Grps and Ab, if they
exist.

Problem 5. Dualize the situation in Problem 4 to define a category X ↓ C and the notion
of a “push-out.” Do push-outs exist in Sets, Grps, and Ab?

Definition. A morphism f : X → Y is said to be a monomorphism if it is left-cancellable:

(f ◦ g1 = f ◦ g2) =⇒ g1 = g2.

It is a split monomorphism if it is left-invertible: there exists g : Y → X such that g◦f = idX .
Dually, an epimorphism is a morphism that is right-cancellable, and a split epimorphism is
a morphism that is right-invertible.

Problem 6. Prove that if a morphism is both an epimorphism and a split monomorphism
then it is an isomorphism. (Dually, monic and split epi ⇒ isomorphism.)

1



Problem 7. Show that a pull-back of a monomorphism is a monomorphism. More precisely,
show that if

A

h
��

k // B

f
��

C g
// D

is a pull-back and f is a monomorphism then h is a monomorphism. (Dually, the push-out
of an epimorphism is an epimorphism.)

Problem 8. Let F a G : C → D be an adjunction with unit η : idC → GF and counit
ε : FG→ idD. Prove that the adjunction induces an equivalence between the subcategory

{X ∈ C | ηX is an isomorphism} ⊂ C
and the subcategory

{Y ∈ D | εY is an isomorphism} ⊂ D.

Problem 9. Let F : C → D be a functor, and let G1 and G2 be two functors that are right
adjoint to F . Prove that G1 and G2 are isomorphic. [Hint: Yoneda...]

Definition. A functor F : C → D is said to be conservative if it “reflects isomorphisms”:
Ff isomorphism ⇒ f isomorphism.

Problem 10. Many of the categories C that we are familiar with (such as Grps, Rings,
Top, etc.) possess a “forgetful” functor U : C → Sets. More generally, there are forgetful
functors which don’t go all the way down to Sets. For example, Ab→ Grps (forget we are
abelian), Rings→ Rngs (forget we have a unit), and so on.

(a) Explain intuitively why forgetful functors are faithful.
(b) Are forgetful functors conservative in general?

Problem 11. (Free constructions). For many of our familiar categories C, the forgetful
functor U : C → Sets admits a left adjoint F : Sets → C which sends a set E to the “free
object” of the category C over the set E. The idea might be best illustrated by considering
some examples:

(a) Determine the “free commutative ring” over a given set E.
(b) Determine the “free topological space” over a given set E.
(c) Determine the “free ring” over a given rng R.

Problem 12. Does there exist a right adjoint to the forgetful functor U : Top→ Sets?

Problem 13. Recall the notion of an additive category from Homework 1. A functor
F : A → B between additive categories is additive if the induced maps MorA(X, Y ) →
MorB(FX,FY ) are morphisms of abelian groups.

(a) Prove that a functor F : A → B between additive categories is additive iff it preserves
biproducts. (Part of the problem is to precisely pin down what this means.)

(b) Give additive versions of the covariant and contravariant Yoneda embeddings using
additive functors to Ab. What advantage does this additive version have over the
usual Yoneda embedding?
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