MATH 210A HOMEWORK 2

- **Problem 1.** Let \mathcal{C} be a category, \mathcal{I} a small category and $F : \mathcal{I} \to \mathcal{C}$ a functor.
 - (a) Prove that $\lim_{i \in \mathcal{I}} F(i)$ is characterized by the existence, for every $T \in \mathcal{C}$, of a natural bijection

$$\operatorname{Mor}_{\mathcal{C}}(T, \lim_{i \in \mathcal{I}} F(i)) \simeq \lim_{i \in \mathcal{I}} \operatorname{Mor}_{\mathcal{C}}(T, F(i)).$$

(b) Similarly, $\operatorname{colim}_{i \in \mathcal{I}} F(i)$ is characterized by the existence, for every $T \in \mathcal{C}$, of a natural bijection

$$\operatorname{Mor}_{\mathcal{C}}(\operatorname{colim}_{i\in\mathcal{I}}F(i),T)\simeq \lim_{i\in\mathcal{I}}\operatorname{Mor}_{\mathcal{C}}(F(i),T).$$

Problem 2. Let \mathcal{C} be a category, \mathcal{I} a small category, and let $\Delta_{\mathcal{I}}(-) : \mathcal{C} \to \mathcal{C}^{\mathcal{I}}$ denote the constant diagram functor.

- (a) Prove that \mathcal{C} admits \mathcal{I} -shaped limits if and only if the constant diagram functor $\Delta_{\mathcal{I}}$ admits a right adjoint $\lim_{\mathcal{I}}(-): \mathcal{C}^{\mathcal{I}} \to \mathcal{C}$.
- (b) Prove that \mathcal{C} admits \mathcal{I} -shaped colimits if and only if the constant diagram functor $\Delta_{\mathcal{I}}$ admits a left adjoint $\operatorname{colim}_{\mathcal{I}}(-): \mathcal{C}^{\mathcal{I}} \to \mathcal{C}$.

Definition. A functor $F : \mathcal{C} \to \mathcal{D}$ is *continuous* if it preserves all small limits that exist in \mathcal{C} and is *cocontinuous* if it preserves all small colimits that exist in \mathcal{C} .

Problem 3. Prove that right adjoints are continuous while left adjoints are cocontinuous.

Problem 4. Let X be a fixed object in a category C.

- (a) Consider a new category $\mathcal{C} \downarrow X$ whose objects are the morphisms $f : Y \to X$ (for $Y \in Ob(\mathcal{C})$) and where a morphism between $f : Y \to X$ and $g : Z \to X$ is a morphism $h : Y \to Z$ in \mathcal{C} such that $g \circ h = f$. Show that $\mathcal{C} \downarrow X$ is a category. This is sometimes called the *comma category of* \mathcal{C} over X.
- (b) Let $\mathcal{C} \downarrow X$ be as above. Prove that the product of two objects $f : Y \to X$ and $g : Z \to X$ in $\mathcal{C} \downarrow X$ is just the fiber product of Y and Z over X in \mathcal{C} . Explicitly describe the fiber product ("pull-back") in the categories **Sets**, **Grps** and **Ab**, if they exist.

Problem 5. Dualize the situation in Problem 4 to define a category $X \downarrow C$ and the notion of a "push-out." Do push-outs exist in **Sets**, **Grps**, and **Ab**?

Definition. A morphism $f: X \to Y$ is said to be a monomorphism if it is left-cancellable:

$$(f \circ g_1 = f \circ g_2) \Longrightarrow g_1 = g_2.$$

It is a *split monomorphism* if it is *left-invertible*: there exists $g: Y \to X$ such that $g \circ f = id_X$. Dually, an epimorphism is a morphism that is right-cancellable, and a split epimorphism is a morphism that is right-invertible.

Problem 6. Prove that if a morphism is both an epimorphism and a split monomorphism then it is an isomorphism. (Dually, monic and split epi \Rightarrow isomorphism.)

Problem 7. Show that a pull-back of a monomorphism is a monomorphism. More precisely, show that if

is a pull-back and f is a monomorphism then h is a monomorphism. (Dually, the push-out of an epimorphism is an epimorphism.)

Problem 8. Let $F \dashv G : \mathcal{C} \to \mathcal{D}$ be an adjunction with unit $\eta : \mathrm{id}_{\mathcal{C}} \to GF$ and counit $\epsilon : FG \to \mathrm{id}_{\mathcal{D}}$. Prove that the adjunction induces an equivalence between the subcategory

 $\{X \in \mathcal{C} \mid \eta_X \text{ is an isomorphism}\} \subset \mathcal{C}$

and the subcategory

 $\{Y \in \mathcal{D} \mid \epsilon_Y \text{ is an isomorphism}\} \subset \mathcal{D}.$

Problem 9. Let $F : \mathcal{C} \to \mathcal{D}$ be a functor, and let G_1 and G_2 be two functors that are right adjoint to F. Prove that G_1 and G_2 are isomorphic. [Hint: Yoneda...]

Definition. A functor $F : \mathcal{C} \to \mathcal{D}$ is said to be *conservative* if it "reflects isomorphisms": Ff isomorphism $\Rightarrow f$ isomorphism.

Problem 10. Many of the categories C that we are familiar with (such as **Grps**, **Rings**, **Top**, etc.) possess a "forgetful" functor $U : C \rightarrow$ **Sets**. More generally, there are forgetful functors which don't go all the way down to **Sets**. For example, **Ab** \rightarrow **Grps** (forget we are abelian), **Rings** \rightarrow **Rngs** (forget we have a unit), and so on.

- (a) Explain intuitively why forgetful functors are faithful.
- (b) Are forgetful functors conservative in general?

Problem 11. (Free constructions). For many of our familiar categories C, the forgetful functor $U : C \to$ **Sets** admits a left adjoint F : **Sets** $\to C$ which sends a set E to the "free object" of the category C over the set E. The idea might be best illustrated by considering some examples:

- (a) Determine the "free commutative ring" over a given set E.
- (b) Determine the "free topological space" over a given set E.
- (c) Determine the "free ring" over a given rng R.

Problem 12. Does there exist a right adjoint to the forgetful functor $U : \text{Top} \rightarrow \text{Sets}$?

Problem 13. Recall the notion of an additive category from Homework 1. A functor $F : \mathcal{A} \to \mathcal{B}$ between additive categories is *additive* if the induced maps $Mor_{\mathcal{A}}(X,Y) \to Mor_{\mathcal{B}}(FX, FY)$ are morphisms of abelian groups.

- (a) Prove that a functor $F : \mathcal{A} \to \mathcal{B}$ between additive categories is additive iff it preserves biproducts. (Part of the problem is to precisely pin down what this means.)
- (b) Give additive versions of the covariant and contravariant Yoneda embeddings using additive functors to **Ab**. What advantage does this additive version have over the usual Yoneda embedding?