MATH 210A HOMEWORK 10

Problem 1.

- (a) Show that an abelian group admits at most one left $\mathbb{Z}/n\mathbb{Z}$ -module structure.
- (b) Show that an abelian group admits at most one left $S^{-1}\mathbb{Z}$ -module structure for any multiplicative subset $S \subset \mathbb{Z}$.

Problem 2. Let R be a ring.

- (a) Let $I \subset R$ be a two-sided ideal. Show that there is an isomorphism between the category of left R/I-modules and that of left R-modules such that IM = 0.
- (b) Let $S \subset R$ be a central multiplicative subset. As above, determine an isomorphism between the category of left $S^{-1}R$ -modules and some subcategory of left *R*-modules.

Problem 3.

- (a) Show that if the free *R*-modules *Rⁿ* and *R^m* over a non-zero commutative ring *R* are isomorphic, then n = m. [Hint: Free modules remain free under extension of scalars.]
- (b) Show that (a) can fail for non-commutative rings.

Problem 4. Prove that a (left) *R*-module generated by one element is isomorphic to R/I, where *I* is some (left) ideal of *R*.

Problem 5. Determine all $\mathbb{Z}[X]$ -module structures on the abelian group $\mathbb{Z}/5\mathbb{Z}$.

Problem 6. Determine all integers n > 0 such that $\mathbb{Z}/n\mathbb{Z}$ has a $\mathbb{Z}[i]$ -module structure.

Problem 7. Show that a submodule of a free module need not be free.

Problem 8. Show that a commutative ring for which all modules are free is a field. Is this true in the non-commutative case?

Problem 9. Adjunction between tensor product and Hom-functor: Let A, B, C, D be rings, let L be an A-B-bimodule, let M be a B-C-bimodule and let N be a D-C-bimodule. Then there is an isomorphism of D-A-bimodules

(1) $\operatorname{Hom}_{C}(L \otimes_{B} M, N) \simeq \operatorname{Hom}_{B}(L, \operatorname{Hom}_{C}(M, N)).$

Make all module structures explicit. State the special case $A = D = \mathbb{Z}$. With the same left-hand side as in (1), rephrase the above "with L moving to the right instead of M."