MATH 210A: HOMEWORK 8

Problem 73. Find an example of a ring that is right noetherian but not left noetherian.

Problem 74. Find an example of a commutative ring that is noetherian but not artinian.

Problem 75. Prove that an artinian integral domain is a field.

Problem 76. Let R be a domain, and $\Sigma \subset R$ a multiplicative set with $0 \notin \Sigma$.

- (a) Prove that if R is a PID, then $R[\Sigma^{-1}]$ is still a PID.
- (b) If R is a UFD, is $R[\Sigma^{-1}]$ necessarily a UFD?

Problem 77. Let R be a ring, and consider R[[X]], the ring of formal power series with coefficients in R. An element of R[[X]] is

$$f = \sum_{n=0}^{\infty} a_n x^n, \qquad a_n \in R.$$

with multiplication defined by

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{i+j=n}^{\infty} a_i + b_j\right) x^n.$$

- (a) Show that R[[X]] is a noetherian if R is.
- (b) Show that $f \in R[[X]]$ is invertible if and only if a_0 is.

Problem 78.

- (a) Find a Euclidean function $\varphi : \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}^+$ and prove the Gaussian integers $\mathbb{Z}[i] := \{a + bi : a, b \in \mathbb{Z}\}$ is a Euclidean domain.
- (b) Prove that every subring $\mathbb{Z} \subsetneq R \subsetneq \mathbb{Z}[i]$ is not a PID, and in particular cannot be a Euclidean domain.
- (c) Prove that a prime number $p \in \mathbb{Z}$ seen as $p \in \mathbb{Z}[i]$ is a prime element if and only if $p \equiv 3 \mod 4$.

Problem 79. Prove that $\mathbb{Z}\left[\sqrt{-5}\right]$ is not a UFD. Hint: find an element which does not admit a unique factorization.

Problem 80. Prove that $R = \mathbb{Z}\begin{bmatrix} \frac{1+\sqrt{-19}}{2} \end{bmatrix}$ is not a Euclidean domain. Remark: R is a rare example of a PID that is not a Euclidean domain. This fact is unhelpful for the proof.