MATH 210A: HOMEWORK 7

Problem 63. Find all ring endomorphisms of \mathbb{R} , the real numbers. Which are invertible?

Problem 64.

- (a) Prove that every two-sided ideal $J \subset M_n(R)$ of the matrix ring is of the form $M_n(I)$ for a two-sided ideal $I \subset R$.
- (b) Give an explicit example of a left ideal of $M_n(R)$ that is not of the form $M_n(I)$ for $I \subset R$ a left ideal.

Problem 65. Let R be a commutative ring and $I, J \subset R$ two ideals. Prove that the set of elements $\{ij : i \in I, j \in J\}$ is not necessarily ideal using the ring $\mathbb{Z}[X]$.

Problem 66. For an ideal $I \subset R$ in a commutative ring, we let the *radical* of the ideal be the set

$$\sqrt{I} := \{ r \in R : r^n \in I \text{ for some } n \in \mathbb{N} \}.$$

- (a) Prove that if I is an ideal, so is \sqrt{I} .
- (b) Prove that $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- (c) Prove that $\sqrt{\sqrt{I} + \sqrt{J}} = \sqrt{I + J}$.
- (d) Give necessary and sufficient conditions for $\sqrt{I} = R$.
- (e) Show that $\sqrt{I \cdot J} = \sqrt{I \cap J}$.

Problem 67. For a commutative ring R let $\mathcal{N}(R)$ be the set of nilpotent elements of R, that is all $a \in R$ such that $a^n = 0$ for some $n \in \mathbb{N}$. This is called the nilradical.

- (a) Prove that the nilradical is an ideal.
- (b) Prove that $\sqrt{\mathcal{N}(R)} = \mathcal{N}(R)$.
- (c) Prove that for any ideal $I \subset R$, $\mathcal{N}\left(R/\sqrt{I}\right) = 0$.
- (d) Prove that the set of nilpotent elements of $M_2(\mathbb{Z})$ is not an ideal.

Problem 68.

- (a) Formalise the statement 'localisation commutes with radicals' and prove it.
- (b) Formalise the statement 'localisation commutes with quotients' and prove it.

Problem 69. Let R be a ring, and let $\Sigma \subset R$ be a central multiplicative subset. Let $\varepsilon : R \to R[\Sigma^{-1}]$ be the localisation functor.

- (a) What is the kernel of ε ?
- (b) Show that ε is an epimorphism in the category of rings.
- (c) What necessary and sufficient conditions can you put on Σ so that $R[\Sigma^{-1}] \cong 0$?
- (d) Show that the association $J \mapsto \varepsilon^{-1}(J)$ defines an injective map φ from the set of oneor two-sided ideals of $R[\Sigma^{-1}]$ to those of R.
- (e) What is the image of this map? What is the inverse map from the image of φ to the ideals of $R[\Sigma^{-1}]$?
- (f) Formalise the statement 'the quotient rings are preserved under this bijection' and prove it.

Problem 70.

- (a) Describe the ideals of $\mathbb{Z}[1/a]$, defined as the localisation of \mathbb{Z} at the multiplicative subset $\{1, a, a^2, \ldots\}$.
- (b) Let $p \in \mathbb{Z}$ be a prime number, and let $\Sigma_p = \{a \in \mathbb{Z} : p \nmid a\}$. Prove that Σ_p is multiplicative and describe the ideals of the localisation $\mathbb{Z}_{(p)} := \mathbb{Z}[\Sigma_p^{-1}]$.

Problem 71. Let k be a field, and let $f \in k[X,Y]$ be an irreducible polynomial. Let $\Sigma_f := \{g \in k[X,Y] : f \nmid g\}.$

- (a) Prove that Σ_f is a multiplicative set.
- (b) Prove that $k[X,Y]_{(f)} := k[X,Y][\Sigma_f^{-1}]$ is a subring of k(X,Y), the field of rational functions of two variables.
- (c) Let $r \in k(X, Y)$ be a rational function. Prove that the set

 $\Phi_r := \left\{ f \in k[X, Y] \text{ monic irreducible} : r \notin k[X, Y]_{(f)} \subset k(X, Y) \right\}$ is finite for each r.

Problem 72. Let R be a ring. An *idempotent* is $e \in R$ such that $e^2 = e$.

- (a) Show that if $e \in R$ is a central idempotent, then $R \cong Re \times R(1-e)$, the left ideals generated by those elements.
- (b) Show that if $R = R_1 \times R_2$, there is a central idempotent $e \in R$ such that $R_1 = Re$ and $R_2 = R(1 e)$. Show also that R_1 and R_2 are localisations of R.
- (c) What are the idempotent elements of $\mathbb{Z}/n\mathbb{Z}$?
- (d) How many idempotent elements are there in an integral domain?