MATH 210A: HOMEWORK 6

Problem 53. (a) Show that a subgroup of a solvable group remains solvable.

(b) Show that a subgroup of a nilpotent group remains nilpotent.

(c) Show that a quotient of a solvable group remains solvable.

(d) Show that a quotient of a nilpotent group remains nilpotent.

Consider an exact sequence

 $1 \longrightarrow N \longrightarrow G \longrightarrow H \longrightarrow 1.$

- (e) Show that if N and H are solvable then so is G.
- (f) Show that if N and H are nilpotent then G needs not be nilpotent but that it is the case if N is contained in the center of G.

Problem 54. Recall that the derived series for G is defined by $G^{(0)} = G$, and $G^{(i)} = [G^{(i-1)}, G^{(i-1)}]$, the commutator subgroup of the previous stage.

- (a) Prove that the derived series is a normal series of G, i.e. each $G^{(i)}$ is normal in G.
- (b) Prove that G is solvable if and only if $G^{(n)}$ is trivial for some $n \in \mathbb{N}$.

Problem 55. Prove the equivalence between being nilpotent and having the ascending, or descending, central series "terminate" (see statement in class).

Problem 56.

- (a) Prove that every group of order 12 is solvable.
- (b) Using (a), prove that any group of order 588 is solvable.

Problem 57. Find an example of a finite solvable group which admits no *normal* series with each quotient cyclic.

Problem 58. Prove that the dihedral group D_{2n} is solvable for any n.

Problem 59. Prove that the free product $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ is solvable.

Problem 60. Prove that the subgroup of $GL_n(k)$ consisting of upper triangular matrices is solvable for any field k.

Problem 61. Let $G := \langle a, b, c : [a, b] = b, [b, c] = c, [c, a] = a \rangle$, where $[x, y] = xyx^{-1}y^{-1}$. Prove that G is the trivial group.

Problem 62. Show that a finite nilpotent group is the product of its Sylow subgroups.