MATH 210A: HOMEWORK 5

Problem 41. Consider a short exact sequence $A \rightarrow G \rightarrow H$ of groups with A abelian. Construct an action of H on A 'by conjugation', even if the sequence is not split.

Problem 42. Let $N = S_3 \cong D_6 = \langle x, y | x^3 = y^2 = (xy)^2 = 1 \rangle$ and $G = D_{12} = \langle r, s | r^6 = s^2 = (rs)^2 = 1 \rangle$; construct $N \hookrightarrow G$ and show that $G/N \cong C_2 =: H$. Show that different sections of $G \to H$ yield different decompositions of G as $N \rtimes H$. Prove that $D_6 \rtimes C_2 \cong D_6 \times C_2$ in a way which is compatible with the short exact sequences $1 \to N \to G \to H \to 1$.

Problem 43. Let N and H be fixed groups. Show by example that two non-isomorphic actions of H on N can give isomorphic semidirect products, compatible with the corresponding short exact sequences $N \rightarrowtail N \rtimes H \longrightarrow H$.

Problem 44. The Five Lemma for groups:

(a) First, suppose we have a diagram

$$\begin{array}{ccc} A_2 & \longrightarrow & A_3 & \longrightarrow & A_4 & \longrightarrow & A_5 \\ f_2 & & & f_3 & & & f_4 & & & f_5 \\ B_2 & \longrightarrow & B_3 & \longrightarrow & B_4 & \longrightarrow & B_5 \end{array}$$

with exact rows. Prove that if f_2 and f_4 are epimorphisms and f_5 is a monomorphism, then f_3 is an epimorphism. (In your solution, please label the horizontal arrows as you see fit.)

(b) Second, suppose we have a diagram

$$\begin{array}{ccc} A_1 & \longrightarrow & A_2 & \longrightarrow & A_3 & \longrightarrow & A_4 \\ f_1 & & & f_2 & & & f_3 & & & f_4 \\ B_1 & \longrightarrow & B_2 & \longrightarrow & B_3 & \longrightarrow & B_4 \end{array}$$

with exact rows. Prove that if f_2 and f_4 are monomorphisms and f_1 is an epimorphism, then f_3 is a monomorphism. (Please make your notation for horizontal arrows consistent.)

(c) State and prove the Five Lemma with the weakest hypotheses necessary.

Problem 45.

- (a) Let p be a prime. Prove that every group of order p^2 is abelian. Hint: Problem 37.
- (b) Discuss the types of groups of order p^3 . (The abelian ones are easy to sort out.)

Problem 46. Let G be a finitely-generated group. Prove that G has only finitely many subgroups of index n for each $n \in \mathbb{N}$.

Problem 47. Recall that a composition series for G is a chain of subgroups with $H_0 = \{e\}$, $H_n = G$, and $H_i \triangleleft H_{i+1}$ such that H_{i+1}/H_i is simple.

- (a) Exhibit all composition series for the dihedral group D_8 .
- (b) Exhibit all composition series for the quaternion group Q_8 .

(c) Exhibit all composition series for the symmetric groups S_n . Hint: for all but finitely many n, the composition series has length 2.

Problem 48.

- (a) Prove that there are no simple groups of order 132.
- (b) Prove that there are no simple groups of order 6545.
- (c) Suppose that G is a simple group of order 168. How many elements of order 7 must there be?

Problem 49.

- (a) Describe all finite groups that have only two conjugacy classes.
- (b) Describe all finite groups that have only three conjugacy classes.

Problem 50. A group is said to be *nilpotent* if it admits a normal tower $\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$ with the property that $H_{i+1}/H_i \subset Z(G/H_i)$ (i.e. is abelian) for each *i*. The minimum possible length of such a "central tower" is called the nilpotency class of G.

- (a) The upper central series of a group G is a sequence of subgroups defined by setting $Z_0(G) = \{e\}, Z_1(G) = Z(G), \text{ and } Z_{i+1}(G)$ to be the subgroup of G containing $Z_i(G)$ such that $Z_{i+1}(G)/Z_i(G) = Z(G/Zi(G))$. Prove that G is nilpotent if and only if $Z_c(G) = G$ for some $c \in \mathbb{N}$.
- (b) The lower central series of a group G is a sequence of subgroups defined by setting $G_0 = G$, $G_1 = [G, G]$, and $G_{i+1} = [G, G_i]$. Prove that G is nilpotent if and only if $G_c = 1$ for some $c \in \mathbb{N}$.
- (c) Let $1 \to N \to G \to H \to 1$ be a short exact sequence (i.e. $N \subset Z(G)$). Show that G is nilpotent if and only if N and H are.
- (d) Show that any *p*-group is nilpotent.
- (e) Show that the cartesian product of a finite number of nilpotent groups is nilpotent.
- (f) What is the relationship between nilpotent and solvable groups?

Problem 51. Let G be a finite group. Prove that the following are equivalent:

- (a) G is nilpotent.
- (b) Every Sylow subgroup of G is normal.
- (c) G is a direct product of p-groups.

Problem 52. Find an example of an infinite non-abelian nilpotent group, and prove it is nilpotent. Hint: consider matrix groups.