MATH 210A: HOMEWORK 4

Problem 31. Let D_8 be the group of isometries of a square.

- (a) Show that D_8 is generated by two elements ρ and σ , with $\rho^4 = \sigma^2 = 1$ and $\sigma \rho \sigma = \rho^{-1}$.
- (b) Draw the subgroup tree for D_8 . What are the normal subgroups of D_8 ?
- (c) Find two subgroups $K, H < D_8$ such that $K \triangleleft H$ and $H \triangleleft D_8$ but K is not normal in D_8 .

Problem 32. Let $n \geq 1$. Define the dihedral group D_{2n} (similar to above) by

$$D_{2n} := \langle \rho, \sigma : \rho^n = \sigma^2 = 1, \sigma \rho \sigma = \rho^{-1} \rangle.$$

- (a) Prove that D_{2n} is the group of isometries of the regular *n*-gon and has order 2n. (Hint: you can embed D_{2n} into S_n . The specific embedding depends on the parity of n.)
- (b) Determine the centre $Z(D_{2n})$.
- (c) Determine all normal subgroups of D_{2n} .
- (d) Prove that $D_6 \cong S_3$, but $D_{24} \not\cong S_4$.

Problem 33. Let G be a finite group, and let $a \neq b \in G$ such that $a^2 = b^2 = 1$. Prove that the subgroup generated by a and b is isomorphic to a dihedral group D_{2n} .

Problem 34. Let Inn G denote the set of *inner automorphisms* of G, that is, the set of automorphisms of the form $g \mapsto aga^{-1}$ for some fixed $a \in G$.

- (a) Prove that $\operatorname{Inn} G$ is a subgroup of $\operatorname{Aut} G$.
- (b) Prove that $\operatorname{Inn} G$ is, in fact, a normal subgroup of Aut G.
- (c) Prove that every automorphism of S_3 is inner, and that $\operatorname{Aut} S_3 \cong S_3$.
- (d) Find an automorphism of D_4 that is not inner.

Problem 35. Show that if $\varphi \in \operatorname{Aut} S_4$ and $\tau \in S_4$ is a transposition, then $\varphi(\tau)$ is also a transposition. By studying the action of φ on transpositions, show that every automorphism of S_4 is inner.

Problem 36. There is a natural group homomorphism $\varphi : G \to \text{Inn}(G)$. Prove that it is surjective and determine its kernel.

Problem 37. Let G be a group and let $N \subset Z(G)$ be a subgroup of its centre.

- (a) Show that $N \triangleleft G$.
- (b) Prove that if G/N is cyclic, then G is abelian.
- (c) Suppose that $\operatorname{Aut} G$ is cyclic. Prove that G is abelian. (Hint: use the isomorphism implied by Problem 36 and part (b).)

Problem 38.

- (a) Determine the order of the automorphism group of \mathbb{Z}^2 .
- (b) Determine the order of the automorphism group of $\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

Problem 39. Consider the inclusion $\mathbb{Z} \to \mathbb{Q}$ as abelian groups under addition. Describe the quotient group \mathbb{Q}/\mathbb{Z} and the structure of its subgroups.

Problem 40. For a group G, let [G, G] denote the subgroup generated by all elements $ghg^{-1}h^{-1}$.

- (a) Prove that $[S_n, S_n] = A_n$ for $n \ge 3$.
- (b) Prove that $[GL_n(\mathbb{C}), GL_n(\mathbb{C})] = SL_n(\mathbb{C})$ for $n \ge 3$. Hint: find a way to describe the generators of $SL_n(\mathbb{C})$ rather than using the characterisation $\det(M) = 1$.
- (c) Does that equality hold for general fields k that are not necessarily algebraically closed?