MATH 210A: HOMEWORK 3

Throughout, let H < G denote that H is a subgroup of G.

Problem 25. Consider the functor $F : \mathbf{Group} \to \mathbf{Set}$ sending a group G to the set of its subgroups $\{H : H < G\}$.

- (a) Prove that this is indeed a functor.
- (b) Is F representable? Why or why not?

Problem 26. Let G be a cyclic group.

- (a) Prove that G is determined up to isomorphism by |G|.
- (b) Describe all subgroups of G.
- (c) Determine all automorphisms of G.

Problem 27. Recall that the *normaliser* of a subgroup H < G, denoted N_GH , is the set of all elements $g \in G$ such that $gHg^{-1} = H$.

- (a) Prove that $N_G H$ is a subgroup for any H < G.
- (b) Give an example of a group G, a subgroup H, and $g \in G$ so that $gHg^{-1} \subsetneq H$ (strict containment).
- (c) Define the *normal closure* of a subgroup and show by example that $N_G H$ needn't be equal to the normal closure of H.

Problem 28.

- (a) Show that if $g^2 = e$ for all g in a group G, then G is abelian.
- (b) Show that every subgroup of index 2 is normal.
- (c) Let |G| be finite, and let p be the smallest prime dividing |G|. Show that every subgroup of index p is normal. (Hint: you need to use group actions to solve this, so you may need to save it for later.)

Problem 29.

- (a) Determine the order of the symmetric group S_n .
- (b) Prove that S_n is generated by the set of all transpositions (i j). (If you T_EX this, please include a space \backslash , in between entries in a cycle.)
- (c) Prove that in fact, S_n may be generated by just the transpositions $(12), (13), \ldots, (1n)$.
- (d) Prove that S_n may also be generated by (12) and the *n*-cycle $(12 \cdots n)$.
- (e) Prove that if n is prime, S_n may be generated by any transposition and the n-cycle $(12 \cdots n)$. Give an example of a transposition that won't generate S_4 along with (1234).

Problem 30. Recall from Problem 29(b) that any element $\sigma \in S_n$ can be written as a product of transpositions.

- (a) Show that the number of transpositions in such an expression is always odd or always even.
- (b) Use this to define the signature map sgn : $S_n \to C_2 = \{\pm 1\}$. Prove that this is a group homomorphism (where the group operation on C_2 is multiplication). What is the kernel of this map?