Math 210A Homework 5

Question 1.

- (a) Determine all subgroups of A_4 . Show that A_4 has no subgroup of order 6.
- (b) Determine all normal subgroups of A_4 .
- (c) Does there exist a nontrivial group action of A_4 on a set of two elements?

Question 2. Prove that every automorphism of S_3 is inner and $Aut(S_3) \cong S_3$.

Question 3.

- (a) Prove that every group of order p^2 (for p a prime) is abelian.
- (b) Let G be a group with $|G| = p \cdot q$ for p and q two prime numbers, q > p and $q \not\equiv 1 \pmod{p}$. Prove that $G \cong \mathbb{Z}/pq\mathbb{Z}$.
- (c) Is there a group G such that G/Z(G) has order 143?

Question 4. Prove that any group of order 2k, where k is odd, has a normal subgroup of index 2. (Hint: Let G act on itself by left translation, and G has an element of order 2.)

Question 5. Classify all groups of order 154. (Hint: First use Question 4.)

Question 6.

- (a) Exhibit all composition series for the quaternion group Q_8 .
- (b) Exhibit all composition series for the dihedral group D_8 .

Question 7. Consider $G = \text{Aut}_{\text{Sets}}(\mathbb{N})$. For $\sigma \in G$, define as usual its fixed set by $\mathbb{N}^{\sigma} := \{a \in \mathbb{N} \mid \sigma(a) = a\}$ and let $M(\sigma) := \mathbb{N} - \mathbb{N}^{\sigma}$ be the set moved by σ .

- (a) Show that $S_{\infty} := \{ \sigma \in G \mid M(\sigma) \text{ is finite} \}$ is a normal subgroup of G.
- (b) Prove that $S_{\infty} \simeq \operatorname{colim}_{n \in \mathbb{N}} S_n$ under explicit inclusions $S_n \hookrightarrow S_{n+1}$.
- (c) Let A be the subgroup of S_{∞} consisting of those σ that act as an even permutation on $M(\sigma)$. Prove that $A = \operatorname{colim}_{n \in \mathbb{N}} A_n$.
- (d) Prove that A is an infinite simple group.
- (e) Find an example of another infinite simple group. (Hint: Think of groups of matrices).

Question 8.

- (a) Prove that there are no simple groups of order 132.
- (b) Prove that there are no simple groups of order 6545.
- (c) How many elements of order 7 must there be in a simple group of order 168?

Question 9.

- (a) Find all finite groups that have exactly two conjugacy classes.
- (b) Find all finite groups that have exactly three conjugacy classes.

Question 10. Let G be a finitely generated group. For each positive integer n, show there are only finitely many subgroups of index n.