Math 210A Homework 3

Question 1. Let \mathcal{C} be a category, \mathcal{I} a small category and $F : \mathcal{I} \to \mathcal{C}$ a functor.

(a) Prove that $\lim_{i \in \mathcal{I}} F(i)$ is characterized by the existence, for every $T \in \mathcal{C}$, of a natural bijection (of sets)

$$\operatorname{Mor}_{\mathcal{C}}(T, \lim_{i \in \mathcal{I}} F(i)) \cong \lim_{i \in \mathcal{I}} \operatorname{Mor}_{\mathcal{C}}(T, F(i)).$$

(b) Similarly, characterize $\underset{i \in \mathcal{I}}{\operatorname{colim}} F(i)$ as follows: For every $T \in \mathcal{C}$, there is a natural bijection

$$\operatorname{Mor}_{\mathcal{C}}(\operatorname{colim}_{i\in\mathcal{I}}F(i), T) \cong \lim_{i\in\mathcal{I}}\operatorname{Mor}_{\mathcal{C}}(F(i), T).$$

Question 2. Let A be a semigroup (that is, a set with an associative law $a \cdot b$)

- (a) Suppose A has a left identity element $e_L \in A$ (that is, $e_L \cdot a = a$ for each $a \in A$). Suppose further that each element $a \in A$ has a left inverse. Prove that A is a group.
- (b) Suppose now that A has a left identity and every element has a right inverse. Is this enough to conclude that A is a group?

Question 3. Let G be a cyclic group.

- (a) Describe all subgroups of G.
- (b) Find all automorphisms of G.

Question 4.

- (a) Show that if $g^2 = e$ for every g in a group G, then G is abelian.
- (b) Show that every subgroup of index p = 2 is normal.
- (c) Let p be an odd prime. Find a group with a non-normal subgroup of index p.
- (d) Prove that if G is a finite group of even order, then G contains an element a such that $a \neq e$ but $a^2 = e$.

Question 5.

- (a) Determine the order of the symmetric group S_n .
- (b) Prove that S_n is generated by all the transpositions.
- (c) Prove that S_n is, in fact, generated by the transpositions (1, 2), (1, 3), ..., (1, n).
- (d) Prove that S_n can be generated by the transposition (1, 2) and the *n*-cycle (1, 2, ..., n).

Question 6. Let D_8 be the group of isometries of a square (distance-preserving bijections).

- (a) Show that it is generated by two elements ρ and σ such that $\rho^4 = 1$, $\sigma^2 = 1$ and $\sigma \rho \sigma = \rho^{-1}$.
- (b) Determine all subgroups of D_8 .
- (c) Find subgroups $K \triangleleft H \triangleleft D_8$ such that K is not normal in D_8 .

Question 7. Let $n \ge 1$. Define a group by generators and relations as $D_{2n} = \langle \rho, \sigma | \rho^n = \sigma^2 = \sigma \rho \sigma \rho = 1 \rangle$. It is called *the dihedral group of order 2n*.

- (a) Show that D_{2n} indeed has order 2n. (Hint: Embed D_{2n} into $\operatorname{End}_{Ab}(\mathbb{C})$.)
- (b) Identify D_{2n} as the isometries of the regular *n*-gone $(n \ge 3)$.
- (c) Determine the center $Z(D_{2n})$.
- (d) Find all normal subgroups of D_{2n} .
- (e) Prove that $D_6 \cong S_3$, but that $D_8 \not\cong S_4$.

Question 8. Let $\operatorname{Inn}(G) \subset \operatorname{Aut}(G)$ be the subgroup of *inner automorphisms* of G (that is, automorphisms of the form $a \mapsto gag^{-1}$ for some $g \in G$). Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.

Question 9.

- (a) Let G be a group, and let N be a subgroup of the center Z(G). Show that N is normal in G. Prove that if G/N is cyclic then G is abelian.
- (b) Let G be a group and suppose Aut(G) is cyclic. Prove that G is abelian. (Hint: Use the group Inn(G), defined in Question 8 and compare with part (a) above for N maximal.)

Question 10. Show that a group with no non-trivial automorphism is trivial or isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Hint: First check it is abelian and 2-torsion.