Math 210A Homework 2

Question 1. Let C be a category.

- (a) Let X be a fixed object in \mathcal{C} . Consider a new category $\mathcal{C} \downarrow X$ where the objects are the morphisms $f: Y \longrightarrow X$ (for $Y \in Ob(\mathcal{C})$) and morphisms between $f: Y \longrightarrow X$ and $g: Z \longrightarrow X$ is a morphism $h: Y \longrightarrow Z$ such that gh = f. Show that $\mathcal{C} \downarrow X$ is a category. This is sometimes called the *comma category of* \mathcal{C} over X.
- (b) Let $\mathcal{C} \downarrow X$ be as above. Prove that the product of two objects $f : Y \longrightarrow X$ and $g : Z \longrightarrow X$ in $\mathcal{C} \downarrow X$ is just the fiber product of Y and Z over X in \mathcal{C} . Explicitly describe the fiber product ("pull-back") in the categories Sets, Gps and Ab, if they exist.

Question 2. Dualize the situation in Question 1 to define a category $X \downarrow C$ and the notion of a "push-out". Do push-outs exist in Sets, Gps, and Ab?

- **Question 3.** (a) Let A and B be two abelian groups. Let Hom(A, B) be the set of group homomorphisms from A to B. Prove that Hom(A, B) is also an abelian group.
 - (b) Adapt the covariant and contravariant Yoneda Lemmas to this situation.

Question 4. Let $F : \mathcal{C} \longrightarrow \mathcal{D}$ be a functor, and let G_1 and G_2 be two functors that are right adjoint to F. Prove there is a unique isomorphism of functors $G_1 \cong G_2$.

Question 5. Let F and G be two adjoint functors. Prove that the unit and counit are isomorphisms if and only if F and G are equivalences of categories.

Question 6. Find a left adjoint functor to the inclusion functor from Ab to Gps.

Question 7.

- (a) Determine the "free commutative ring" over a given set E.
- (b) Determine the "free ring" over a given rng R.
- (c) Determine the "free topological space" over a given set E.

Question 8. Is there a right adjoint functor to the forgetful functor $F : \mathsf{Sets} \longrightarrow \mathsf{Top}$?

Question 9. Let \mathcal{C} be a category, and \mathcal{I} a small category. Define the *constant diagram* functor $\Delta : \mathcal{C} \to \mathcal{C}^{\mathcal{I}}$ as follows. For any object $X \in Ob(\mathcal{C})$, define $\Delta(X) : \mathcal{I} \longrightarrow \mathcal{C}$ to be the constant functor taking every object of \mathcal{I} to X and each morphism to id_X .

- (a) Explain how this defines a functor $\Delta : \mathcal{C} \longrightarrow \mathcal{C}^{\mathcal{I}}$.
- (b) Prove that if every object $F \in C^{\mathcal{I}}$ has a colimit, then we can define a functor colim : $C^{\mathcal{I}} \longrightarrow C$ which is left adjoint to Δ . Is the converse true?
- (c) Prove that if every object $F \in \mathcal{C}^{\mathcal{I}}$ has a limit, then we can define a functor lim : $\mathcal{C}^{\mathcal{I}} \longrightarrow \mathcal{C}$ which is right adjoint to Δ . Is the converse true?

Question 10. Let \mathcal{C} and \mathcal{D} be categories. (Suppose, if you want, that all limits and colimits exist in both \mathcal{C} and \mathcal{D} .) Let $F : \mathcal{C} \longrightarrow \mathcal{D}$ be left adjoint to $G : \mathcal{D} \longrightarrow \mathcal{C}$. Prove that F preserves colimits and that G preserves limits.

Question 11. Express all the axioms of a group using only diagrams (in Sets).