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Abstract. We survey tensor triangular geometry : Its examples, early theory and first
applications. We also discuss perspectives and suggest some problems.
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Introduction

Tensor triangular geometry is the study of tensor triangulated categories by algebro-
geometric methods. We invite the reader to discover this relatively new subject.

A great charm of this theory is the profusion of examples to be found throughout
pure mathematics, be it in algebraic geometry, stable homotopy theory, modular
representation theory, motivic theory, noncommutative topology, or symplectic
geometry, to mention some of the most popular. We review them in Section 1.
Here is an early photograph of tensor triangular geometry, in the crib :
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2 Paul Balmer

Before climbing into vertiginous abstraction, it is legitimate to enquire about
the presence of oxygen in the higher spheres. For instance, some readers might
wonder whether tensor triangulated categories do not lose too much information
about the more concrete mathematical objects to which they are associated. Our
first answer is Theorem 54 below, which asserts that a scheme can be reconstructed
from the associated tensor triangulated category, whereas a well-known result of
Mukai excludes such reconstruction from the triangular structure alone. Informally
speaking, algebraic geometry embeds into tensor triangular geometry.

The main tool for this result is the construction of a locally ringed space
Spec(K) =

(
Spc(K) , OK

)
for any tensor triangulated category K, which gives

back the scheme in the above geometric example. Interestingly, this construction
also gives the projective support variety, VG(k), in modular representation theory.
This unification is one of the first achievements of tensor triangular geometry.

The most interesting part of our Spec(K) is the underlying space Spc(K), called
the spectrum of K. We shall see that determining Spc(K) is equivalent to the clas-
sification of thick triangulated tensor-ideals of K. Indeed, in almost all examples,
the classification of all objects of K is a wild problem. Nevertheless, using sub-
sets of Spc(K), one can always classify objects of K modulo the basic operations
available in K : cones, direct summands and tensor products (Theorem 14). This
marks the beginning of tensor triangular geometry, per se. See Section 2.

A general goal of this theory is to transpose ideas and techniques between the
various areas of the above picture, via the abstract platform of tensor triangulated
categories. For instance, from algebraic geometry, we shall abstract the technique
of gluing and the concept of being local. From modular representation theory, we
shall abstract Carlson’s Theorem [18] and Rickard’s idempotents. And of course
many techniques used in triangulated categories have been borrowed from homo-
topy theory, not the least being the above idea of classifying thick tensor-ideals.

Finally, we also want applications, especially strict applications, i. e. results
without tensor triangulated categories in the statement but only in the proof. Such
applications already exist in algebraic geometry (for K-theory and Witt groups)
and in modular representation theory (for endotrivial modules). And applications
start to emerge in other areas as well. We discuss this in Section 3.

Let us illustrate our philosophy with a concrete abstraction. Take the notion
of ⊗-invertible object u ∈ K (i. e. u ⊗ v ' 11 for some v ∈ K). This perfectly
⊗-triangular concept covers line bundles in algebraic geometry and endotrivial
modules in modular representation theory. Now, in algebraic geometry, a line
bundle is locally isomorphic to 11. Hence, the ⊗-triangular geometer asks :

(a) Can one make sense of “locally” in any ⊗-triangulated category?

(b) Are all ⊗-invertible objects “locally” isomorphic to 11, say, up to suspension?

(c) Can one use these ideas to relate line bundles and endotrivial modules?

We shall see that the respective answers are: yes, no (!) and, nonetheless, yes.

Acknowledgements : I’m indebted to many friends and colleagues, that I would
like to thank, collectively but very sincerely, for their help and support.
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1. Tensor triangulated categories in nature

1.1. Basic definitions.
Let us remind the reader of the notion of triangulated category, introduced by

Grothendieck-Verdier [50] forty years ago. See Neeman [41] for a modern reference.

Definition 1. A triangulated category is an additive category K (we can add
objects a⊕ b and morphisms f + g) with a suspension Σ : K

∼→ K (treated here as
an isomorphism of categories) and a class of so-called distinguished triangles

∆ =
(
a

f // b
g // c h // Σa

)
which are like exact sequences in spirit and are subject to a list of simple axioms :

(TC 1) Bookkeeping axiom : Isomorphic triangles are simultaneously distinguished;

∆ as above is distinguished if and only if its rotated b
g // c h // Σa

−Σf// Σb

is distinguished; a
1 // a // 0 // Σa is distinguished for every object a.

(TC 2) Existence axiom : Every morphism f : a→ b fits in some distinguished ∆.

(TC 3) Morphism axiom : For every pair of distinguished triangles ∆ and ∆′

∆ =

(
a

f //

k ��

b
g //

` ��

c
h //

∃m ��

Σ(a)
)

Σk��

∆′ =

(
a′

f ′
// b′

g′
// c′

h′
// Σ(a′)

)
,

every commutative square (on the left) fits in a morphism of triangles.

This was also proposed by Puppe in topology but Verdier’s notorious addition is :

(TC 4) Octahedron axiom : Any two composable morphisms a
f−→ a′

f ′−→ a′′ fit in

a commutative diagram (marked arrows c · // c′ mean c−→Σ(c′))

a
f //

##
a′

f ′ //

��					
a′′

�������

rr

b

��55555

·333

YY33

b′·oo

·666
[[66

b′′

CC�����

·

LL

or equivalently

a′′

������

��77777777777

a′

f ′
66mmmmmmmmmmm

��66666666666 b′·oo

·

��

a
QQQQf

hhQQQQQQQ

OO

b′′·oo

hhRRRRRRRRRRRR

b

·���

@@��
66llllllllllll

in which the four triangles of the form

•

·��
����
• //•

^^=====
are distinguished.

A functor between triangulated categories is exact if it commutes with suspension
(up to isomorphism) and preserves distinguished triangles in the obvious way.
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Remark 2. Assuming (TC 1)-(TC 3), the third object c in a distinguished trian-
gle ∆ over a given f : a → b is unique up to (non-unique) isomorphism and is
called the cone of f , denoted cone(f). The octahedron axiom simply says that
there is a nice distinguished triangle relating cone(f), cone(f ′) and cone(f ′ ◦ f).

The power of this axiomatic comes from its remarkable flexibility, compared for
instance to the concepts of abelian or exact categories, which are somewhat too
“algebraic”. As we shall recall below, triangulated categories appear in a priori
non-additive frameworks. In fact, the homotopy category of any stable Quillen
model category is triangulated, see Hovey [27, Chap. 7].

Definition 3. A tensor triangulated category (K,⊗, 11) is a triangulated cate-
gory K equipped with a monoidal structure (see Mac Lane [33, Chap. VII])

K×K
⊗−→ K

with unit object 11 ∈ K. We assume −⊗− exact in each variable, i. e. both functors
a ⊗ − : K → K and − ⊗ a : K → K are exact, for every a ∈ K. This involves
natural isomorphisms (Σa)⊗ b ' Σ(a⊗ b) and a⊗ (Σb) ' Σ(a⊗ b) that we assume
compatible, in that the two ways from (Σa) ⊗ (Σb) to Σ2(a ⊗ b) only differ by a
sign. Although some of the theory holds without further assumption, we are going
to assume moreover that ⊗ is symmetric monoidal : a⊗ b ∼= b⊗a, see [33, §VII.7].

An exact functor F between tensor triangulated categories is ⊗-exact if it
preserves the tensor structure, including the 11, up to isomorphisms which are
compatible with the isomorphism FΣ ' ΣF , in the hopefully obvious way.

Remark 4. This is the most elementary axiomatic for “tensor triangulated”;
see details in Hovey-Palmieri-Strickland [28, App. A]. May [34] proposed further
compatibility axioms between tensor and octahedra, later extended by Keller-
Neeman [30]. However, the elementary Definition 3 suffices for our purpose.

Such structures abound throughout pure mathematics, as we now review. See
also [28, 1.2.3] for examples. We cannot provide background, motivation and
explanations on all the following subjects and we assume some familiarity with at
least some of the examples below, depending on the reader’s own interests.

1.2. Examples from algebraic geometry.

Let X be a scheme, here always assumed quasi-compact and quasi-separated
(i. e. X admits a basis of quasi-compact open subsets); e.g. X affine, or X noethe-
rian, like a variety over a field. Then K = Dperf(X), the derived category of perfect
complexes over X, is a tensor triangulated category. See SGA 6 [14] or Thoma-
son [49]. It sits K ⊂ T inside the tensor triangulated category T = DQcoh(X)(X)
of complexes of OX -modules with quasi-coherent homology. Such a complex is
perfect if it is locally quasi-isomorphic to a bounded complex of finitely generated
projective modules. When X is a quasi-projective variety over a field, Dperf(X) is
simply Db(VBX) the bounded derived category of vector bundles. The conceptual
way of thinking of perfect complexes is as the compact objects in T (Def. 44). See
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Neeman [40] or Bondal-van den Bergh [15, Thm. 3.1.1]. The tensor ⊗ = ⊗L
OX

is
the left derived tensor product and the unit 11 is OX (as a complex concentrated
in degree 0).

When X = Spec(A) is affine, these categories are T = D(A–Mod), the derived
category of A-modules, and K = Dperf(A) ∼= Kb(A–proj), the homotopy category
of bounded complexes of finitely generated projective A-modules.

1.3. Examples from stable homotopy theory.
Let K = SHfin be the Spanier-Whitehead stable homotopy category of finite

pointed CW-complexes. It sits K ⊂ T as a tensor triangulated subcategory inside
T = SH, the stable homotopy category of topological spectra. The tensor ⊗ = ∧ is
the smash product and the unit 11 = S0 is the sphere spectrum. See Vogt [53]. One
can also replace these by equivariant versions, use modules over a ring spectrum,
or treat everything over a fixed base space.

1.4. Examples from modular representation theory.
Let k be a field of positive characteristic and let G be a finite group, or a finite

group scheme over k. (The adjective modular refers to kG not being semi-simple,
i. e. to the existence of non-projective kG-modules.) Then K = stab(kG), the
stable module category of finitely generated kG-modules, modulo the projectives,
is a tensor triangulated category. It sits K ⊂ T inside the bigger tensor triangulated
category T = Stab(kG), the stable category of arbitrary kG-modules. Objects of
Stab(kG) are k-representations of G and morphisms are equivalence classes of kG-
linear maps under the relation f ∼ 0 when f factors via a projective (which is the
same as an injective). The tensor is ⊗k with diagonal G-action and the unit is the
trivial representation 11 = k. See Happel [23], Carlson [19] or Benson [11]. One
can alternatively consider Db(kG–mod), inside D(kG–Mod), with tensor product
as above. Rickard [45] proved that the obvious functor kG–mod → Db(kG–mod)
induces an equivalence of ⊗-triangulated categories

(5) stab(kG) ∼= Db(kG–mod)/Kb(kG–proj) .

1.5. Examples from motivic theory.
Let S be the spectrum of a perfect field (or some general base scheme). Then

K = DMgm(S), Voevodsky’s derived category of geometric motives over S, is a
tensor triangulated category. It sits K ⊂ T = DM(S) inside the derived category
of motives over S. The tensor product extends the fiber product X×S Y . See [52].
The unit 11 is simply the motive of the base S (in degree zero).

1.6. Examples from A1-homotopy theory.

Denote by K = SHA1
gm(S) the triangulated subcategory generated by smooth

S-schemes in the stable A1-homotopy category T = SHA1(S) of Morel-Voevodsky;
see [51] or [36]. Again, the tensor ⊗ is essentially characterized as extending the
fiber product ×S of S-schemes; and again 11 is the base S. In some sense, § 1.6 is
to § 1.5 what § 1.3 is to § 1.2.
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1.7. Examples from noncommutative topology.
It is customary to think of C∗-algebras as noncommutative topological spaces.

Let G be a second countable locally compact Hausdorff group – even G trivial is
interesting. Then KKG, the G-equivariant Kasparov category of separable G-C∗-
algebras, is a tensor triangulated category, with ⊗ given by the minimal tensor
product with diagonal G-action. See Meyer [35, § 4] for instance.

As the full category KKG might be a little too overwhelming at first, we can
follow Dell’Ambrogio [21] and consider the triangulated subcategory K = KG
generated by the unit 11 = C. It actually sits inside the Bootstrap category T = T G,
which is the localizing subcategory of KKG generated by the unit.

1.8. Further examples.
There are examples in other areas of mathematics. For instance, triangulated

categories famously appear in symplectic geometry, where Kontsevich’s homologi-
cal mirror symmetry conjecture [31] predicts an equivalence between the homotopy
category of the Fukaya category of Calabi-Yau manifolds and the derived category
of their mirror variety. Here, the tensor is a very interesting problem, which has
seen recent progress in the work of Subotic [47].

As yet another example, Bühler recently proposed a triangulated category ap-
proach to bounded cohomology in [17]. Actually, examples of triangulated cat-
egories flourish in many directions, be it in connection to cluster algebras, knot
theory, or theoretical physics, to mention a few less traditional examples. In this
luxuriant production of triangulated categories, we focus on tensor triangulated
ones. And even if we “only” have the examples presented so far, the theory already
calls for a unified treatment. Well, precisely, here comes one.

2. Abstract tensor triangular geometry

2.1. The spectrum.
The basic idea of tensor triangular geometry, formulated in [1], is the construc-

tion of a topological space for every ⊗-triangulated category K, called the spectrum
of K, in which every object b of K would have a support. This support should be
understood as the non-zero locus of b. Since this idea admits no obvious formal-
ization a priori, we follow the Grothendieckian philosophy of looking for the best
such space, in a universal sense. To do this, we have to decide which properties
this support should satisfy.

Theorem 6 ([1, Thm. 3.2]). Let K be an essentially small ⊗-triangulated category.
There exists a topological space Spc(K) and closed subsets supp(a) ⊂ Spc(K) for
all objects a ∈ K, which form a support datum on K, i. e. such that

(SD 1) supp(0) = ∅ and supp(11) = Spc(K),

(SD 2) supp(a⊕ b) = supp(a) ∪ supp(b) for every a, b ∈ K,
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(SD 3) supp(Σa) = supp(a) for every a ∈ K,

(SD 4) supp(c) ⊂ supp(a) ∪ supp(b) for every distinguished a→ b→ c→ Σa,

(SD 5) supp(a⊗ b) = supp(a) ∩ supp(b) for every a, b ∈ K

and such that (Spc(K), supp) is the final support datum on K in the sense that for
every support datum (X,σ) on K (i. e. X a space with closed subsets σ(a) ⊂ X
for all a ∈ K satisfying (SD 1-5) above), there exists a unique continuous map
ϕ : X → Spc(K) such that σ(a) = ϕ−1(supp(a)) for every object a ∈ K.

Before explicitly constructing Spc(K), let us recall some standard terminology :

Definition 7. A non-empty full subcategory J ⊂ K is a triangulated subcategory
if for every distinguished triangle a → b → c → Σa in K, when two out of
a, b, c belong to J, so does the third; here, we call J thick if it is stable by direct
summands : a ⊕ b ∈ J ⇒ a, b ∈ J (usual definition of thick) and triangulated; we
say that J is ⊗-ideal if K⊗J ⊂ J; it is radical if ⊗

√
J = J, that is, a⊗n ∈ J⇒ a ∈ J.

Construction 8. We baptize the universal support datum (Spc(K), supp) of The-
orem 6 the spectrum of K. The content of the proof is the explicit construction
of Spc(K). A thick ⊗-ideal P ( K is called prime if it is proper (11 /∈ P) and if
a⊗ b ∈ P implies a ∈ P or b ∈ P. The spectrum of K is the set of primes :

Spc(K) :=
{
P ( K

∣∣P is prime
}
.

(This is where we use K essentially small.) The support of an object a ∈ K is

supp(a) :=
{
P ∈ Spc(K)

∣∣ a /∈ P
}
.

The complements U(a) :=
{
P ∈ Spc(K)

∣∣ a ∈ P
}

, for all a ∈ K, define an open
basis of the topology of Spc(K). Examples of Spc(K) are given in § 3.1 below.

Remark 9. Of course, the above notion of prime reminds us of commutative
algebra. Yet, this analogy is not a good reason for considering primes P ⊂ K. On
the contrary, ⊗-triangular geometers should refrain from believing that everything
works in all areas covered by ⊗-triangular geometry as simply as in their favorite
toy area. The justification for the definition of Spc(K) is given by the universal
property of Theorem 6 and by the Classification Theorem 14 below.

Remark 10. An important question is : Why do we ask supp(a) to be closed?
After all, several notions of support involve non-closed subsets, if we deal with
“big” objects. For instance, in D(Z–Mod), the object Q should certainly be sup-
ported only at (0), which is not closed in Spec(Z). This is a first indication that
our theory is actually well suited for so-called compact objects (Def. 44). In fact,
the assumption that K is essentially small points in the same direction : For in-
stance, D(Z–Mod) is not essentially small but Dperf(Z) is. We shall return to this
discussion in a few places below, culminating in § 2.6.

Let us now collect some basic facts about the space Spc(K), all proven in [1].
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Proposition 11. Let K be an essentially small ⊗-triangulated category.

(a) If K is non-zero then Spc(K) is non-empty.

(b) The space Spc(K) is spectral in the sense of Hochster [24], that is, it is quasi-
compact and quasi-separated (has a basis of quasi-compact open subsets) and
every non-empty closed irreducible subset has a unique generic point (hence
Spc(K) is T0).

(c) For every ⊗-exact functor F : K → L, the assignment Q 7→ F−1(Q) defines
a map ϕ = Spc(F ) : Spc(L) → Spc(K) which is continuous and spectral (the
preimage of a quasi-compact open subset is quasi-compact). So, Spc(−) is a
contravariant functor. For every a ∈ K, we have supp(F (a)) = ϕ−1(supp(a)).

Remark 12. Hochster [24] observed that a spectral space X has a dual topology
with dual-open subsets Y ⊂ X being the arbitrary unions

(13) Y = ∪i∈I Yi with each complement X r Yi open and quasi-compact.

We call such a dual-open Y a Thomason subset of X, in honor of Thomason’s
insightful result [48, Thm. 4.1], which transposes remarkably well beyond algebraic
geometry. When the space X is noetherian (every open is quasi-compact), a subset
Y is Thomason if and only if it is specialization closed (y ∈ Y ⇒ {y} ⊂ Y ).

The next two results show that the computation of Spc(K) is equivalent to the
classification of thick ⊗-ideals (see Definition 7 for terminology about ideals).

Theorem 14 (Classification of thick tensor-ideals [1, Thm. 4.10]). Let K be an
essentially small ⊗-triangulated category. Then the assignment

(15) Y 7−→ KY :=
{
a ∈ K

∣∣ supp(a) ⊂ Y
}
,

induces a bijection between Thomason subsets Y of the spectrum, see (13), and
radical thick ⊗-ideals J of K. Its inverse is J 7→ supp(J) := ∪

a∈J
supp(a).

Being radical is a mild condition, as we shall see in Remark 23. Theorem 14
admits the following converse :

Theorem 16. If the radical thick ⊗-ideals of K are classified as in (15), by
the Thomason subsets of a support datum (X,σ) with X spectral in the sense
of Hochster, then the map ϕ : X → Spc(K) of Theorem 6 is a homeomorphism.

Theorem 16 was originally proven in [1, Thm. 5.2] under the assumption that
X be a noetherian space. The ideal proof is due to Buan-Krause-Solberg [16,
Cor. 5.2], who also extended our spectrum to lattices of ideals.

Remark 17. In categories like K = SHfin or K = Dperf(A), which are generated
by the unit 11, every thick subcategory is automatically ⊗-ideal. Similarly, K =
stab(kG) is generated by the unit 11 = k for G a p-group. However, the global
study requires the tensor, see Remark 53.
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We now indicate what happens to the spectrum under the few general con-
structions which are available for arbitrary ⊗-triangulated categories.

Theorem 18. Let K be an essentially small ⊗-triangulated category.

(a) Let J ⊂ K be a thick ⊗-ideal. Then Verdier localization K
q→ K/J (Remark 19)

induces a homeomorphism from Spc(K/J) onto the subspace
{
P
∣∣P ⊃ J

}
of Spc(K). For instance, if J = 〈a〉 = Ksupp(a) is the thick ⊗-ideal gener-
ated by one object a ∈ K, then Spc(K/〈a〉) ' U(a) is open in Spc(K).

(b) Idempotent completion ι : K → K\ (see [10] or Remark 22 below) induces a
homeomorphism Spc(ι) : Spc(K\)

∼→ Spc(K).

(c) Let u ∈ K be an object such that the cyclic permutation (123) : u⊗3 ∼→ u⊗3 is
the identity and consider F : K→ K[u⊗−1]. Then Spc(F ) yields a homeomor-
phism from Spc(K[u⊗−1]) onto the closed subspace supp(u) of Spc(K).

Proof. (a) and (b) are [1, Prop. 3.11 and Cor. 3.14]. For (c), recall that K[u⊗−1]
has objects (a,m) with a ∈ K and m ∈ Z (the formal a ⊗ u⊗m) and morphisms
Hom

(
(a,m), (b, n)

)
= colimk→+∞HomK(a ⊗ u⊗m+k, b ⊗ u⊗n+k). This category

inherits from K a unique ⊗-triangulation and the functor F : a 7→ (a, 0) is ⊗-
exact. The assumption on (123) ensures that the tensor structure on K[u⊗−1] is
well-defined on morphisms. Then, the inverse of Spc(F ) is defined by P 7→ P[u⊗−1]
for every prime P ⊂ K such that P ∈ supp(u), that is, u /∈ P. Indeed, the latter
condition implies that P[u⊗−1] is both proper and prime in K[u⊗−1].

Remark 19. Recall that the Verdier quotient q : K−→K/J is the universal
functor out of K such that q(J) = 0. It is the localization of K with respect to
the morphisms s in K such that cone(s) ∈ J. It can be constructed by keeping
the same objects as K and defining morphisms as equivalence classes of fractions
· s← · → · with cone(s) ∈ J, under amplification.

We now introduce a very useful condition on K :

Definition 20. A ⊗-triangulated category K is rigid if there exists an exact
functorD : Kop → K and a natural isomorphism HomK(a⊗b, c) ∼= HomK(b,Da⊗c)
for every a, b, c ∈ K. One calls Da the dual of a. In the terminology of [33] and [28],
(K,⊗) is closed symmetric monoidal and every object is strongly dualizable.

Hypothesis 21. From now on, we assume our ⊗-triangulated category K to be
essentially small, rigid and idempotent complete.

Remark 22. Following up on Remark 10, the assumption that K is rigid is another
indication that our input category K cannot be chosen too big. Much milder is the
assumption that K is idempotent-complete, i. e. every idempotent e = e2 : a → a
in K yields a decomposition a = im(e)⊕ ker(e), since K can always be idempotent

completed K
ι
↪→ K\ (see [10]) without changing the spectrum (Thm. 18 (b)).

Remark 23. Under Hypothesis 21, some natural properties become true in K.
For instance, supp(a) = ∅ forces a = 0 (not only ⊗-nilpotent) by [3, Cor. 2.5].
Moreover, if supp(a)∩ supp(b) = ∅ then HomK(a, b) = 0, see [3, Cor. 2.8]. Finally,
every thick ⊗-ideal J ⊂ K is automatically radical ⊗

√
J = J by [3, Prop. 2.4].
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2.2. Localization.
Let us introduce the most important basic construction of ⊗-triangular geome-

try, which gives a meaning to “the category K over some open U of its spectrum”.

Construction 24. For every quasi-compact open U ⊂ Spc(K), with closed com-
plement Z := Spc(K) r U , we define the tensor triangulated category K(U) as

K(U) :=
(
K/KZ

)\
.

It is the idempotent completion of the Verdier quotient (Rem. 19) K/KZ of K

by the thick ⊗-ideal KZ =
{
a ∈ K

∣∣ supp(a) ⊂ Z
}

of those objects supported
outside U . We have a natural functor resU : K → K(U). One can prove that
Spc(resU ) induces a conceptually pleasant homeomorphism, see [9, Prop. 1.11],

Spc(K(U)) ∼= U .

Hence quasi-compactness of U is necessary since Spc(K) is always quasi-compact,
see Prop. 11 (b). Informally, the category K(U) is the piece of K living above
the open U . For every a, b ∈ K, we abbreviate HomK(U)(resU (a), resU (b)) by
HomU (a, b). In the same spirit, we say that something about K happens “over U”,
when it happens in the category K(U) after applying the restriction functor resU .

Theorem 25 ([5, § 4]). Let K be a ⊗-triangulated category as in Hypothesis 21.

(a) The topological space Spc(K) is local (i. e. every open cover contains the whole
space) if and only if a⊗ b = 0 implies a = 0 or b = 0. Then {0} is the unique
closed point of Spc(K) and we call K a local ⊗-triangulated category.

(b) For every P ∈ Spc(K), the category K/P is local in the above sense. Its

idempotent completion (K/P)
\

is the colimit of the K(U) over those quasi-
compact open U ⊂ Spc(K) containing the point P ∈ Spc(K).

Remark 26. Roughly speaking, K/P (or rather (K/P)
\
) is the stalk of K at the

point P ∈ Spc(K). The support supp(a) =
{
P
∣∣ a /∈ P

}
=
{
P
∣∣ a 6= 0 in K/P

}
of

an object a ∈ K can now be understood as the points of Spc(K) where a does not
vanish in the stalk. This expresses the non-zero locus of a, as initially wanted.

Remark 27. Amusingly, a local ⊗-triangulated category K (i. e. a ⊗ b = 0 ⇒
a or b = 0) could hastily be baptized “integral” if one was to follow algebraic
gut feeling. Extending standard terminology to ⊗-triangular geometry requires
some care. Indeed, “local” is correct because of the conceptual characterization of
Theorem 25 (a). And comfortingly, for X a scheme, the ⊗-triangulated category
K = Dperf(X) is local if and only if X ∼= Spec(A) with A a local ring.

Remark 28. When K is local, Spc(K) has a unique closed point by Thm. 25 (a).
Then, the smallest possible support for a non-zero object is exactly that closed
point ∗. We define FL(K) :=

{
a ∈ K

∣∣ supp(a) ⊂ ∗
}

and call such objects
the finite length objects, by analogy with commutative algebra. (This somewhat
improper terminology might need improvement; see the comments in Remark 27.)
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We now use K(U) to create a structure sheaf on Spc(K).

Construction 29. For every quasi-compact open U ⊂ Spc(K), we can consider
the commutative ring EndK(U)(11). Since the unit 11 of K(U) is simply the re-
striction of the unit 11 of K, and since (K(U))(V ) ∼= K(V ) for every V ⊂ U ∼=
Spc(K(U)), we obtain a presheaf of commutative rings pOK, at least on the open
basis consisting of quasi-compact open subsets. This presheaf pOK(U) = EndU (11)
is already useful in itself but can also be sheafified into a sheaf OK of commutative
rings on Spc(K). We denote by

Spec(K) :=
(

Spc(K) , OK

)
the corresponding ringed space. It is a locally ringed space by [5, Cor. 6.6].

Remark 30. The above construction has an obvious algebro-geometric bias and
one should not expect too much from this sheaf of rings OK in general. Still, it
will be important in Theorems 54 and 57 below. Our preferred presheaf on Spc(K)
is not OK but the more fundamental “presheaf” of ⊗-triangulated categories :
U 7→ K(U) of Construction 24.

2.3. Support and decomposition.
Here comes the first ⊗-triangular result which really opens the door to geome-

try. It extends a famous result of Carlson [18] in representation theory.

Theorem 31 ([3, Thm. 2.11]). Let K be a ⊗-triangulated category as in Hypoth-
esis 21 and let a ∈ K be an object. Suppose that its support is disconnected, i. e.
supp(a) = Y1tY2 with each Yi closed and Y1∩Y2 = ∅. Then the object decomposes
accordingly, that is, a ' a1 ⊕ a2 with supp(a1) = Y1 and supp(a2) = Y2.

It is easy to build counter-examples to the above statement if we remove the
assumption that K is idempotent complete, see [3, Ex. 2.13]. This explains why we
insist on idempotent-completion, for instance in the construction of K(U) above.
Theorem 31 has the following application.

Theorem 32 ([3, Thm. 3.24]). Let K be a ⊗-triangulated category as in Hypoth-
esis 21 and assume that Spc(K) is a noetherian topological space (every open is
quasi-compact). Let dim : Spc(K) → Z ∪ {±∞} be a dimension function, i. e.
Q $ P ⇒ dim(Q) + 1 ≤ dim(P). Consider the filtration of K by the ⊗-ideals
K(d) :=

{
a ∈ K

∣∣ dim(P) ≤ d for all P ∈ supp(a)
}

. Then for every finite d ∈ Z,
the corresponding subquotient K(d)/K(d−1) decomposes into a coproduct of local
parts. More precisely, after idempotent completion, we have an equivalence(

K(d)/K(d−1)

)\ ∼−→
∐

P∈Spc(K), dim(P)=d

(
FL(K/P)

)\
where the subcategories of finite-length objects FL(K/P) are the ones of Remark 28.

Examples of dimension functions, dim(P), include the Krull dimension of the
irreducible closed {P}, or the opposite of its Krull codimension, in Spc(K).
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2.4. Gluing and Picard groups.
The true power of Theorem 31 appears in the following gluing method.

Theorem 33 (B.-Favi [9, Cor. 5.8 and 5.10]). Let K be a ⊗-triangulated category
as in Hypothesis 21 and let Spc(K) = U1∪U2 be a cover with both Ui quasi-compact
open. Set U12 := U1 ∩ U2 and consider the commutative square of ⊗-triangulated
categories and restriction functors

K //

��

K(U1)

��
K(U2) // K(U12) .

(a) Gluing of morphisms : For every pair of objects a, b ∈ K, we have a Mayer-
Vietoris long exact sequence of abelian groups

HomU1
(a, b)

· · · ∂ // HomK(a, b) // ⊕ // HomU12
(a, b)

∂ // HomK(a,Σb) // · · ·
HomU2

(a, b)

(b) Gluing of objects : Given two objects ai ∈ K(Ui), i = 1, 2, and an isomorphism
σ : a1

∼→ a2 over U12, there exists a triple (a, f1, f2) where a is an object of K
and fi : a

∼→ ai is an isomorphism over Ui such that σ ◦ f1 = f2 over U12.
This gluing is unique up to possibly non-unique isomorphism of triples in K.

Remark 34. The apparently anodyne non-uniqueness of the isomorphism in (b)
has a cost. Namely, gluing of three objects over three open subsets is still possible
but without uniqueness [9, Cor. 5.11]. And gluing of more than three pieces might
simply not exist unless some connectivity conditions are imposed [9, Thm. 5.13].

Here is an application of the gluing technique to Picard groups.

Definition 35. The Picard group, Pic(K), is the group of isomorphism classes of
⊗-invertible objects of K, that is, those u ∈ K for which there exists v ∈ K with
u⊗ v ' 11. (As K is rigid, v ' Du.) This does not use the triangulation.

We can now construct ⊗-invertible objects by gluing copies of the ⊗-unit 11.

Definition 36. For every quasi-compact open U ⊂ Spc(K), denote by Gm(U) :=
AutU (11) the group of automorphisms of 11 in K(U).

Theorem 37 (B.-Favi [9, Thm. 6.7]). Under Hypothesis 21, if Spc(K) = U1 ∪ U2

with each Ui quasi-compact, then gluing induces a well-defined group homomor-
phism δ : Gm(U12)→ Pic(K), where U12 := U1 ∩ U2. We have an exact sequence

· · ·HomU12
(Σ11, 11)

1+∂ // Gm(Spc(K)) // Gm(U1)⊕Gm(U2) // Gm(U12)BC
GF δ
��

Pic(K) // Pic(K(U1))⊕ Pic(K(U2)) // Pic(K(U12)) ,

which continues on the left as in Theorem 33 (where ∂ also comes from).
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It remains an open problem how to extend this sequence on the right, say,
with Brauer groups. The other natural thing one might want to do is to glue any
Gm-cocycle on Spc(K) into an invertible object of K. Then the difficulty of gluing
more than three pieces (Remark 34) becomes an obstacle. It can be circumvented
in positive characteristic p, at the price of inverting p on the Picard group :

Theorem 38 ([6, Thm. 3.9]). Let p be a prime and K a ⊗-triangulated Z/p-cate-
gory satisfying Hypothesis 21. Let Ȟ1(Spc(K),Gm) be the first Čech cohomology
group with coefficients in the above presheaf of units Gm. Let Picloc.tr.(K) :={

[u]
∣∣u ' 11 in K/P for all P ∈ Spc(K)

}
⊂ Pic(K) be the subgroup of locally

(very) trivial invertibles. Then, gluing induces a well-defined isomorphism β

Ȟ1(Spc(K),Gm) ⊗
Z
Z[1/p]

β−→
'

Picloc.tr.(K) ⊗
Z
Z[1/p] ⊂ Pic(K)⊗

Z
Z[1/p] .

We call 11 the very trivial ⊗-invertible because the right notion of a trivial
⊗-invertible is probably one of the form Σn11 for some n ∈ Z. See more in § 4.5.

Remark 39. In algebraic geometry, invertible objects are (shifted) line bundles.
Hence they are locally trivial for the Zariski topology, which explains why the
Picard group, Pic(X), is the first Zariski cohomology group of Gm. However, there
are local ⊗-triangulated categories with non-trivial Picard group. See Remark 71
for an example in modular representation theory. The following result shows that
the Picard group can be as large as one wants with given (even local) spectrum.

Proposition 40 (B. - Rahbar Virk). Let K be a local ⊗-triangulated category
( Spc(K) connected is enough). Let G be an abelian group. Define a tensor on the
triangulated category L :=

∐
GK by ag⊗bh := (a⊗b)g+h, where ag ∈ L is the object

corresponding to a ∈ K in the copy indexed by g ∈ G. Then Spc(L) ∼= Spc(K)
whereas Pic(L) ∼= Pic(K)×G.

Proof. Easy exercise using the ⊗-invertible objects 11g ∈ L for all g ∈ G and the
fact that every object of L is a finite direct sum ⊕

g∈G
a(g)0⊗ 11g with a(g) ∈ K.

2.5. Comparing triangular spectra and algebraic spectra.

Remark 41. It should be clear by now that the main key to the geometry of a
given ⊗-triangulated category K, is the determination of its spectrum, Spc(K).
We have seen in Theorem 16 that this problem amounts to the classification of
thick ⊗-ideals of K. This is very nice when the latter classification has been kindly
performed by our predecessors but in most new areas such a classification is not yet
under roof and actually constitutes a very interesting challenge. See § 4.1 below. To
study Spc(K) without classification, we need some comparison with other spaces
that might appear in examples. This is the purpose of [5], where we relate Spc(K)
to the spectrum of the endomorphism ring RK = EndK(11) of the ⊗-unit 11, and
to the homogeneous spectrum of the graded ring R•K = HomK(11,Σ•11).
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Theorem 42 ([5, Thm. 5.3]). There exist two natural continuous maps

ρ•K : Spc(K)−→ Spech(R•K) and ρK : Spc(K)−→ Spec(RK)

defined by ρ•K(P) = ⊕
d∈Z

{
f ∈ Rd

K

∣∣ cone(f) /∈ P
}

and ρK(P) = ρ0
K(P).

In fact, these maps are often surjective (yet, not always, see [5, Ex. 8.3]) :

Theorem 43 ([5, § 7]). With the notation of Theorem 42, we have :

(a) Suppose that K is connective, i. e. that Hom(Σi11, 11) = 0 for i < 0 (which reads
Rd

K = 0 for d > 0). Then ρK : Spc(K)→ Spec(RK) is a surjective map.

(b) Suppose that R•K is coherent (e.g. noetherian) in the graded sense. Then both
ρ•K : Spc(K)→ Spech(R•K) and ρK are surjective maps.

Injectivity is more delicate, see Theorem 51. However, in “algebraic” examples,
these maps are (local) homeomorphisms, see Remark 56 and Theorem 57.

2.6. Non-compact objects.
As indicated a couple of times above, the natural input K to our ⊗-triangular

geometry machine consists of small enough categories. Let us now be more precise.

Definition 44. Let T be a triangulated category admitting arbitrary small co-
products

∐
i∈I ti. An object c ∈ T is called compact if for every set of objects

{ti}i∈I in T, the natural map
∐
i∈I HomT(c, ti) → HomT(c,

∐
i∈I ti) is an isomor-

phism. The subcategory Tc of compact objects is triangulated but not closed under
coproducts. We say that T is a compactly generated tensor triangulated category if

(i) Tc generates T, that is, T = Loc(Tc) is the smallest localizing (i. e. closed
under small coproducts) triangulated subcategory of T which contains Tc.

(ii) Tc is essentially small, Tc is rigid and 11 is compact.

In that case, an object is compact if and only if it is rigid (i. e. strongly dualizable)
and the ⊗-triangulated category K := Tc of rigid-compact objects satisfies our
Hypothesis 21. We can then apply the above ⊗-triangular geometry to K = Tc.

Examples 45. Examples § 1.2-1.4 fit in this picture with the T provided each
time. (Examples § 1.5–1.7 require some care.) In [28], ⊗-triangulated categories T

as above are studied under the name unital algebraic stable homotopy categories.

Remark 46. Our spectrum Spc(K) is the right space for the compact part but
Spc(T) is not an appropriate invariant of T for it might not even be a set. Moreover,
we do not need supports of non-compact objects to be closed and we would like
supp(

∐
i∈I ti) = ∪i∈I supp(ti). The question of supp(s ⊗ t) is not entirely clear.

One expects supp(s ⊗ t) ⊂ supp(s) ∩ supp(t) with equality when s is compact.
Putting all this together, one can actually define a “big spectrum” of T as the
universal space with supports, satisfying (SD’ 1)-(SD’ 7) below. Since it is not
clear yet how useful this big spectrum can be, we do not make a theory out of this.
The following result, due independently to Pevtsova-Smith [43] and Dell’Ambrogio,
indicates that such a big spectrum might often coincide with Spc(K) anyway.
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Theorem 47 ([21, Thm. 3.1]). Let T be a compactly generated ⊗-triangulated
category as in Definition 44. Let X be a topological space with a choice of a subset
σ(t) ⊂ X for every object t ∈ T satisfying the following conditions :

(SD’ 1) σ(0) = ∅ and σ(11) = X,

(SD’ 2) σ(s⊕ t) = σ(s) ∪ σ(t) for every s, t ∈ T,

(SD’ 3) σ(Σt) = σ(t) for every t ∈ T,

(SD’ 4) σ(u) ⊂ σ(s) ∪ σ(t) for every distinguished triangle s→ t→ u→ Σs,

(SD’ 5) σ(s⊗ t) ⊂ σ(s)∩σ(t) for every s, t ∈ T, with equality if s or t is compact,

(SD’ 6) σ(
∐
i∈I ti) = ∪i∈Iσ(ti) for every set {ti}i∈I of objects of T,

(SD’ 7) σ(c) is closed for every compact object c ∈ Tc .

In particular (X,σ) is a support datum on K = Tc. Suppose moreover :

(i) X is spectral in the sense of Hochster [24], see Proposition 11 (b).

(ii) An open U ⊂ X is quasi-compact if and only if U = X r σ(c) for c ∈ Tc.

(iii) For t ∈ T, if σ(t) = ∅ then t = 0.

Then the canonical map X → Spc(Tc) of Theorem 6 is a homeomorphism.

In examples where T is given with such supports, Theorem 47 might be used
to compute Spc(K). Conversely, Spc(K), for K = Tc, yields information about the
big category T, via the following inflating technique, see [41, Chap. 4] :

Remark 48. For U ⊂ Spc(K) quasi-compact open with closed complement Z,
set TZ = Loc(KZ) the localizing subcategory of T generated by KZ ⊂ K. In [8],
we define the category “T over U” as the localization T(U) := T/TZ . The ⊗-
triangulated category T(U) remains compactly generated and Neeman’s general-
ization [41, Thm. 4.4.9] of Thomason’s result (Rem. 55) reads :

(
T(U)

)c
= K(U).

This also justifies the idempotent completion in the definition of K(U).

Transposing Rickard’s idempotents [46] to ⊗-triangular geometry gives :

Theorem 49 (B.-Favi [8]). Let T be a compactly generated ⊗-triangulated category
(Def. 44) and K = Tc its compact objects. For every Thomason subset Y ⊂ Spc(K),
there exists a distinguished triangle e(Y ) → 11 → f(Y ) → Σ(e(Y )) in T such that
e(Y ) ⊗ f(Y ) = 0 (hence e(Y )⊗2 ' e(Y ) and f(Y )⊗2 ' f(Y ) are ⊗-idempotents)
and such that f(Y ) ⊗ − : T−→T realizes Bousfield localization with respect to
TY := Loc(KY ) = e(Y )⊗T, the localizing subcategory of T generated by the compact
objects KY =

{
a ∈ K

∣∣ supp(a) ⊂ Y
}

. Moreover, for every pair of Thomason
subsets Y1 , Y2 ⊂ Spc(K), we have isomorphisms e(Y1 ∩ Y2) ∼= e(Y1) ⊗ e(Y2) and
f(Y1 ∪ Y2) ∼= f(Y1)⊗ f(Y2) and two Mayer-Vietoris distinguished triangles in T :

e(Y1 ∩ Y2) // e(Y1)⊕ e(Y2) // e(Y1 ∪ Y2) // Σe(Y1 ∩ Y2)

f(Y1 ∩ Y2) // f(Y1)⊕ f(Y2) // f(Y1 ∪ Y2) // Σf(Y1 ∩ Y2) .
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Using these ⊗-idempotents, we get the announced definition of a support in-
side Spc(K), for all objects of T (compare Benson-Iyengar-Krause [13]) :

Theorem 50 (B.-Favi [8, § 7]). Let T and K = Tc be as above and suppose that
Spc(K) is noetherian. Define κ(P) = e({P})⊗f(supp(P)) ∈ T, for all P ∈ Spc(K)
(here supp(P) is the Thomason subset corresponding to P in the Classification
Theorem 14). Then, the support admits the following extension to all objects t ∈ T :

supp(t) :=
{
P ∈ Spc(K)

∣∣ t⊗ κ(P) 6= 0
}
.

This support satisfies all properties (SD’ 1)-(SD’ 7) of Theorem 47.

Note that (i) and (ii) of Theorem 47 are trivial here. It is not clear when this
support detects vanishing, i. e. when t⊗κ(P) = 0 for all P ∈ Spc(K) implies t = 0.

3. Examples and applications

We now apply the theory of Part 2 to the examples of Part 1.

3.1. Classification of thick ⊗-ideals, after Hopkins.
Such classifications began in stable homotopy theory, see § 1.3, long before the

start of ⊗-triangular geometry. Via Theorem 16, this becomes :

Theorem 51 (Hopkins-Smith [26], see [5, Cor. 9.5]). The spectrum of SHfin is

P2,∞ P3,∞ · · · Pp,∞ · · ·

...
...

...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,1

VVVVVVVVVVVV P3,1
MMMM · · · Pp,1

lllllll · · ·

SHfin
tor

The lines P−P′ indicate that the higher prime is in the closure of the lower one. For
every prime number p and every n ≥ 1, the prime Pp,n of SHfin is the kernel of the
n-th Morava K-theory (composed with localization at p) and Pp,∞ = ∩n≥1Pp,n is

the kernel of localization at p. Finally, SHfin
tor := Ker(H(−,Q)) is the subcategory of

torsion spectra. The surjective continuous map ρ = ρSHfin : Spc(SHfin)−→ Spec(Z)
of Theorem 42 is given by ρ(SHfin

tor) = (0) and ρ(Pp,n) = pZ for all 1 ≤ n ≤ ∞.
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Remark 52. This example yields many observations. First, Spc(SHfin) is not
noetherian and the closed subsets {Pn,∞} are not the support of any object. In

particular, in the local category SHfin
p at p, we have FL(SHfin

p ) = 0. Finally,

Spec(SHfin) is a locally ringed space but is not a scheme. See more in [5].

Remark 53. Hopkins [25] also understood that this classification could be trans-
posed to algebra and indicated that (15) should provide the classification for
K = Dperf(A), with the subsets Y ⊂ Spec(A) being all specialization closed sub-
sets. The actual proof of this statement requires A to be noetherian and was given
by Neeman [39]. But it is Thomason who nailed down the dual-open subsets (our
Thomason subsets) in [48, Thm. 3.15]. His result settles the non-noetherian affine
case and, most interestingly, works for any quasi-separated scheme if one insists
on ⊗-ideal thick subcategories. Via Theorem 16 and Construction 29, this yields :

Theorem 54 (Reconstruction [1, Thm. 6.3]). Let X be a quasi-compact and quasi-
separated scheme. We have an isomorphism Spec(Dperf(X)) ' X of ringed spaces.

Remark 55. Under the underlying homemorphism Spc(Dperf(X)) ' X, we can
reformulate another famous result of Thomason’s [49, § 5] : For every quasi-compact
U ⊂ X, we have K(U) ∼= Dperf(U), where K(U) is as in Construction 24.

Remark 56. The map ϕ : X → Spc(Dperf(X)) of Theorem 16 sends x ∈ X
to Ker

(
Dperf(X) → Dperf(OX,x)

)
. For X = Spec(A) affine and p ∈ Spec(A),

the quotient K/ϕ(p) ∼= Dperf(Ap) is indeed the expected local category. Let us
make two further observations. First, ϕ reverses inclusions, i. e. if p ⊂ q in A then
ϕ(p) ⊃ ϕ(q) in K. This phenomenon is in line with other mildly surprising facts,
to an algebraist’s eye, like {P} =

{
Q
∣∣Q ⊂ P

}
for every P ∈ Spc(K).

Secondly, an inverse to ϕ is given by the map ρK : Spc(K) → Spec(RK) =
Spec(A) of Theorem 42. Hence K = Dperf(A) provides an example where ρK is
not only surjective, as follows from Theorem 43, but also injective. Interestingly,
one can actually give a direct proof of the injectivity of ρK in this case and obtain
the Hopkins-Neeman-Thomason classification for Dperf(A) by Theorem 14. See
details in [5, Rem. 8.4].

Walking in Hopkins’s steps, Benson-Carlson-Rickard [12] and later Friedlander-
Pevtsova [22] performed the classification in modular representation theory for
finite groups and finite group schemes. Combined with Theorem 16, this reads :

Theorem 57 ([1, Thm. 6.3] and [5, Cor. 9.5]). Let k be a field of positive char-
acteristic and G be a finite group (scheme over k). See Section 1.4. Consider
the graded-commutative cohomology ring H•(G, k). Then, for the derived category
K = Db(kG–mod), the map ρ•K of Theorem 42 induces an isomorphism

Spec(Db(kG–mod)) ' Spech(H•(G, k))

between the triangular spectrum of K and the homogeneous spectrum of the coho-
mology. Via (5), it restricts to an isomorphism Spec(stab(kG)) ' Proj(H•(G, k)),
where the latter is the so-called projective support variety VG(k).

Indeed, Friedlander and Pevtsova were able to reconstruct the structure sheaf
of VG by computing the triangular structure sheaf OK of our Construction 29.
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Recently, Krishna [32, Thm. 7.10] proved that the spectrum of the category of
perfect complexes over a (reasonable) stack is the associated moduli space.

3.2. Further computations.
It is now natural to turn to other, newer areas, where the classification of thick

⊗-ideals is not yet known, to see whether the spectrum can be computed by some
other means. Here are some first results in motivic theory and noncommutative
topology. In both cases, the spectrum is only known in the simplest ⊗-triangulated
category that one can produce. But these should be considered as bridgeheads in
two unknown (but friendly) territories.

Let us start with motivic theory, see § 1.5-§ 1.6. Here, the simplest category is
probably that of mixed Tate motives with rational coefficients, i. e. the triangulated
subcategory of DM(k)Q generated by the Tate objects Q(i), for all i ∈ Z.

Theorem 58 (Peter [42]). Let k be a number field and DMT(k)Q be the triangu-
lated category of mixed Tate motives. Then Spc(DMT(k)Q) is just a point.

At the other end of the motivic game, the computation of the spectrum of

SHA1
gm(S) as in § 1.6 is probably a difficult long-term challenge. Using Theorem 43

and Morel’s computation [37] of End
SHA1 (11), we can still get :

Theorem 59 ([5, Cor. 10.1]). Let K = SHA1
gm(k) for a perfect field k of characteris-

tic different from 2 as in Section 1.6. Then the continuous map ρK of Theorem 42
defines a surjection from the triangular spectrum Spc(K) onto the Zariski spectrum
Spec(GW(k)) of the Grothendieck-Witt ring of quadratic forms over k.

The second area we want to discuss is noncommutative topology, see § 1.7. In
that case, the baby ⊗-triangulated category is the thick subcategory KG of KKG

generated by the unit. The ring of endomorphisms of the unit R(G) = EndKKG(11)
is the Grothendieck group of continuous complex representations of G.

Theorem 60 (Dell’Ambrogio [21]). Let G be a finite group. Then the map ρKG of
Theorem 42 is split surjective. It is a homeomorphism for G trivial, i. e. Spc(K) '
Spec(Z) where K ⊂ KK is the triangulated subcategory generated by 11 = C.

Dell’Ambrogio also conjectured [21, Conj. 1.3] that ρKG is injective for every
finite group G. Again, our surjectivity Theorem 43 applies in big generality :

Theorem 61 ([5, Cor. 8.8]). Let G be a compact Lie group. Then the continuous
map ρKG : Spc(KG)→ Spec(R(G)) of Theorem 42 is surjective.

Remark 62. A famous result of Quillen in modular representation theory of a
finite group G asserts that VG is covered by the images of the VE under the
maps Spc(resGE) : VE → VG, where E < G runs through the elementary abelian
p-subgroups. Dell’Ambrogio explains in [21] how the celebrated Baum-Connes
conjecture with coefficients would follow from an analogous property inKK-theory,
namely that the spectrum of KKG (G as in §1.7) be covered by the images of the
various spectra of KKH , where H < G runs through compact subgroups.
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3.3. Applications to algebraic geometry.
The following result is an immediate corollary of Theorem 54 :

Corollary 63. Let X and Y be two quasi-separated (e. g. noetherian) schemes. If
their derived categories of perfect complexes are equivalent Dperf(X) ' Dperf(Y )
as tensor triangulated categories then the schemes X ' Y are isomorphic.

Remark 64. A ⊗-triangular equivalence DQcoh(X)(X) ' DQcoh(Y )(Y ) restricts

to a ⊗-triangular equivalence on the compact parts, Dperf(X) ' Dperf(Y ), hence
implies X ' Y as well. This reconstruction result is known to fail without the
tensor : There exist non-isomorphic schemes, even abelian varieties, with triangular
equivalent derived categories. See Mukai [38].

Remark 65. In homological mirror symmetry, or more generally each time that
one expects a given triangulated category K to be equivalent to Dperf(X) for
some (maybe conjectural) scheme X, it becomes interesting to construct the tensor
product on K which should correspond to that of Dperf(X). See [47]. In this
situation, the scheme X must be Spec(K) by Theorem 54. This does not guarantee
that K = Dperf(X) but it tells us what X must be.

The abstract results of ⊗-triangular geometry apply in particular to K =
Dperf(X). For instance, the filtration by (co)dimension of support in Theorem 32
yields a spectral sequence in any cohomology theory “defined” on derived cate-
gories, like K-theory or Witt theory, for instance. In particular, we get the follow-
ing generalization of Quillen’s famous spectral sequence for regular schemes [44] :

Theorem 66 ([4, Thm. 1]). Let X be a (topologically) noetherian scheme of finite
Krull dimension. Then there is a cohomologically indexed and converging spectral
sequence in Thomason non-connective K-theory [49], of local-global nature :

Ep,q1 =
⊕

x∈X(p)

K−p−q(OX,x on {x}) p+q=n

p,q,n∈Z
+3 K−n(X) .

Remark 67. This theorem is a first strict application of ⊗-triangular geometry,
since the statement does not involve ⊗-triangulated categories. Yet, the deeper
result is Theorem 32 which says that the quotient Dperf(X)(d)/Dperf(X)(d−1)

decomposes, up to idempotent completion, as the coproduct of the categories
FL(Dperf(OX,x)) =

{
a ∈ Dperf(OX,x)

∣∣ supp(a) ⊂ {x}
}

over all x ∈ X(d).
This illustrates the “boomerang effect” of abstraction : Inspired by Quillen [44],

we started from the well-known fact that for a regular scheme, the above quotient
is exactly equivalent to

∐
x∈X(d)

FL(Dperf(OX,x)), without idempotent completion,

and we tried to extend it to ⊗-triangular geometry. This simply fails ! But it works
if one adds the idempotent completion to the picture. Then, Theorem 32 holds
in all areas of ⊗-triangular geometry. Now, this yields a gain even in algebraic
geometry where we started, for we understand that the regularity assumption was
not that important after all. In K-theory, the idempotent completion explains the
presence of negative K-theory in Theorem 66. Of course, all this has its origin in
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Thomason’s description of Dperf(U) (Remark 55) and it is fair to say that he had
everything in [49] to prove Theorem 66. It is nonetheless remarkable that these
ideas extend so far beyond algebraic geometry.

3.4. Applications to modular representation theory.
In modular representation theory, see § 1.4, the filtration Theorem 32 applied

to K = stab(kG) recovers, and slightly improves, a result of Carlson-Donovan-
Wheeler [20, Thm. 3.5]. Let us rather comment on the Picard group, Pic(stab(kG)),
which is a classical invariant, known as the group T (G) = Tk(G) of endotrivial
kG-modules up to isomorphism. A kG-module M is endotrivial if Endk(M) '
k ⊕ (proj) which simply means that M∗ ⊗M ' 11 in stab(kG). We proved :

Theorem 68 (B.-Benson-Carlson [7]). The endotrivial modules obtained by the
gluing technique of Theorem 37 generate a finite-index subgroup of T (G).

Remark 69. Recall the ⊗-triangulated category K(U) of Construction 24 for
every quasi-compact open U ⊂ Spc(K). In algebraic geometry, for X a scheme
and K = Dperf(X), Thomason proved K(U) ' Dperf(U), see Remark 55. In other
words, the construction (K, U) 7−→ K(U) “stays inside algebraic geometry”.

On the other hand, for K = stab(kG) and U ⊂ VG(k) non-trivial, K(U) is
never equivalent to a stable category stab(kH), no matter what finite group H one
tries. See [6, Prop. 4.2]. Hence, although Thomason’s result does work abstractly
and transposes to modular representation theory via the ⊗-triangular construction
K(U), the resulting construction takes us out of basic modular representation
theory. Here is a nice strict application of Theorem 38 (without ⊗-triangulated
categories in the statement) :

Theorem 70 ([6, Thm. 4.7]). Let G be a finite group and VG = Proj(H•(G, k))
its projective support variety over a field k of characteristic dividing the order
of G. Then gluing induces an injection β : Pic(VG)⊗

Z
Z[1/p] ↪→ T (G)⊗

Z
Z[1/p].

Combining with Theorem 68, we obtain a rational isomorphism

Pic(VG)⊗
Z
Q ' T (G)⊗

Z
Q .

Remark 71. The above result fails integrally. For instance, for G = Q8 the
quaternion group and k containing a cubic root of unity, the group of endotrivials
is T (Q8) = Z/4 ⊕ Z/2 although Spc(stab(kQ8)) = VQ8

(k) = ∗ is just a point,
hence Pic(VQ8

) = 0. Note also that stab(kQ8) is a local ⊗-triangulated category.

3.5. Intra-utero applications.
While ⊗-triangular geometry was still in the making, ⊗-triangulated categories

showed useful in the theory of Witt groups of quadratic forms over schemes. This
abstract theory, of so-called triangular Witt groups, has been quite useful. It led
to the proof of the Gersten conjecture for Witt groups, among many other (strict)
applications, including the computation of several classical Witt groups. For a sur-
vey, the interested reader is referred to [2]. In retrospect, many of these triangular
Witt groups results fit very well in the language of ⊗-triangular geometry.
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4. Problems

We have already mentioned a few open questions in the above text. In conclusion,
we briefly suggest some additional directions of possible interest. We refrain from
insisting on the wildest dreams (as in Remarks 62 and 65 for instance) and favor
of a few problems reasonably close to the current stage of the theory.

4.1. Computing the spectrum in more examples.

As discussed in § 2.5, the most basic question is to compute Spc(K) for more
⊗-triangulated categories K, preferably without using the classification of thick
⊗-ideals, in order to deduce the latter via Theorem 14 and show off a little. The-
orem 47 offers an angle of attack. Still, we need more results telling us how to
compare Spc(K) to other spaces. Such a comparison is provided by the maps
ρK and ρ•K of Theorem 42. We have seen that these maps are often surjective
(Thm. 43). It then becomes interesting to decide when they are injective and more
generally to study their fibers.

In algebraic examples like K = Dperf(A) or K = Db(kG–mod), the map ρ•K
is injective (see § 3.1) but we have seen in the very first example (Thm. 51) that
injectivity fails completely outside algebra. The tempting guess would be :

Conjecture 72. The map ρ•K is (locally) injective when K is “algebraic enough”.

Here “algebraic enough” could mean those triangulated categories K which
arise as stable categories of Frobenius exact categories, or, alternatively, those K

which are the derived category of some dg-category, see Keller [29]. It might also
be necessary to add some hypothesis like K being locally generated by 11.

Remark 73. By Hochster [24], any spectral space, like our Spc(K), is the spectrum
of some commutative ring. It would be pleasant to construct such a ring explicitly
in terms of K. The above use of RK and R•K was a first attempt to do this.

4.2. Image of algebraic geometry in ⊗-triangular geometry.

We have seen in Theorem 54 that a scheme X can be reconstructed from the
⊗-triangulated category Dperf(X). An important question is to decide which ⊗-
triangulated categories K are ⊗-equivalent to Dperf(Spec(K)). Actually, it would
also be interesting to know when the locally ringed space Spec(K) is a scheme. As
already mentioned in Remark 65, this could have consequences beyond algebraic
geometry, as for instance in homological mirror symmetry.

Also interesting would probably be the tensor-triangular characterization of
some properties of morphisms of schemes, like being smooth or étale.

4.3. Residue fields.

In examples, triangular primes P ⊂ K are often the kernel of a tensor functor
K → F with F = VBk being the category of k-vector spaces over a field k (in
algebraic geometry), or F being the category of graded modules over a graded field
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k[t, t−1] (in homotopy theory), or F = stab(kCp) being the stable category of kCp-
modules, for Cp the cyclic group of order p = char(k) (in modular representation
theory, although this case is still unclear). This observation calls for two things :

(a) The definition of ⊗-triangular fields F, which would imply in particular that
Spc(F) = {∗} is reduced to a point.

(b) The construction, for every local category K (Thm. 25), of a conservative ⊗-
exact functor π : K→ F into some ⊗-triangular field, that would be a “residue
field”. Conservative means that Ker(π) = 0, i. e. that the image of Spc(π) :
{∗} = Spc(F)−→ Spc(K) would be the unique closed point of Spc(K).

Note that there might be several such residue field functors, as seems to be the
case in modular representation theory. It is not at all clear whether such functors
can be constructed from the ⊗-triangular structure alone but they should certainly
be looked for in examples where one tries to determine Spc(K).

Regarding the definition of ⊗-triangular fields, the naive idea of requesting
the category F to be semi-simple does not cover stab(kCp) for instance. Indeed,
Spc(stab(kCp)) is a point but there is no non-zero ⊗-exact functor from stab(kCp)
into a semi-simple ⊗-category as soon as p ≥ 3. (For p = 2, stab(kC2) ∼= VBk.)
Currently, my favorite guess is to define F to be a triangular field if every non-zero
object x ∈ F is faithful (i. e. x ⊗ f = 0 forces x = 0 or f = 0). This covers all
three examples above and still forces Spc(F) = {∗} but there is no solid conceptual
motivation for this definition at this stage, beyond unification of examples.

4.4. Nilpotence.

A clear understanding of nilpotence phenomena in triangulated categories still
eludes us, even in the presence of a tensor. First, we do not know how to define
reduced ⊗-triangulated categories. Nor do we know how to construct Dperf(Xred)
out of the ⊗-triangulated category K = Dperf(X), except via the odious cheat :
Dperf

(
(Spec(K))red

)
. For instance, even when Spc(K) = {∗} is a point, that is,

when K is something like an “artinian local” ⊗-triangulated category, it is not
clear how to obtain a residue field (§ 4.3) by reduction modulo nilpotents.

Also, there seems to be no obvious way to construct a ⊗-triangulated category
“K over Z”, for a closed subset Z ⊂ Spc(K) of the spectrum, say, with what should
be the “reduced structure”. Neither do I know which closed subsets Z ⊂ Spc(K)
are the support of an object u ∈ K as in Theorem 18 (c). Again, this relates to
the residue field of § 4.3 when K is local and Z = {∗} is the closed point.

4.5. Torsion in the Picard group.

This is a follow-up on Remarks 39 and 71. First, let us note that the isomor-
phism Pic(VG)⊗Q ' T (G)⊗Q of Theorem 70 is still unknown for G a finite group
scheme, because we do not know whether the Picard group is locally torsion in that
case. We have seen in Proposition 40 that the Picard group can be locally wild.
Yet, the example

∐
GK can be ruled out if we further require K to be generated

by 11, as a thick triangulated subcategory. Hence the following hope survives :
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Conjecture 74. Let K be a ⊗-triangulated category as in Hypothesis 21. Assume
that K is local (Thm. 25) and that K is generated by 11. Let u ∈ K be ⊗-invertible.
Then there exists m > 0 such that u⊗m is trivial in the sense that u⊗m ' Σn11 for
some n ∈ Z. That is, Pic(K) is rationally trivial : Pic(K)⊗Z Q = Q · [Σ11].

References

[1] P. Balmer. The spectrum of prime ideals in tensor triangulated categories. J. Reine
Angew. Math., 588:149–168, 2005.

[2] P. Balmer. Witt groups. In Handbook of K-theory. Vol. 2, pages 539–576. Springer,
Berlin, 2005.

[3] P. Balmer. Supports and filtrations in algebraic geometry and modular representa-
tion theory. Amer. J. Math., 129(5):1227–1250, 2007.

[4] P. Balmer. Niveau spectral sequences on singular schemes and failure of generalized
Gersten conjecture. Proc. Amer. Math. Soc., 137(1):99–106, 2009.

[5] P. Balmer. Spectra, spectra, spectra – Tensor triangular spectra versus Zariski
spectra of endomorphism rings. Preprint, 2009.

[6] P. Balmer. Picard groups in triangular geometry and applications to modular rep-
resentation theory. Trans. Amer. Math. Soc., 362(7), 2010.

[7] P. Balmer, D. J. Benson, and J. F. Carlson. Gluing representations via idempotent
modules and constructing endotrivial modules. J. Pure Appl. Algebra, 213(2):173–
193, 2009.

[8] P. Balmer and G. Favi. Generalized tensor idempotents and the telescope conjecture.
Preprint, 24 pages, available at www.math.ucla.edu/∼balmer, 2009.

[9] P. Balmer and G. Favi. Gluing techniques in triangular geometry. Q. J. Math.,
51(4):415–441, 2007.

[10] P. Balmer and M. Schlichting. Idempotent completion of triangulated categories. J.
Algebra, 236(2):819–834, 2001.

[11] D. J. Benson. Representations and cohomology I & II, volume 30 & 31 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1998.

[12] D. J. Benson, J. F. Carlson, and J. Rickard. Thick subcategories of the stable module
category. Fund. Math., 153(1):59–80, 1997.

[13] D. J. Benson, S. B. Iyengar, and H. Krause. Local cohomology and support for
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