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Abstract. These are extended notes from a survey talk on Witt groups of

triangulated categories, given at the Talca–Pucon Conference, December 2002.

1. Introduction

The articles [2] to [9], presenting the theory of triangular Witt groups (TWG)
and its first applications, are meant for quite a general audience, and hence contain
a lot of details. Therefore, I will not repeat the whole material of TWG here, except
for the basic notions of course, but I will rather try to broaden the audience. In
this spirit, I give motivations and preliminary explanations. Motivating a reader
for TWG is probably best achieved by reviewing applications, and this is done in
the second part of the present article. The first part contains preliminary explana-
tions, meant to fill the “triangular gap”. Although basic facts about triangulated
categories are recalled in [3] for instance, a reader not familiar with the language
of triangulated categories might think it too difficult to access and find the trian-
gular Witt groups pretty hard to use in everyday life. Consequently, I added to
this survey a first part which consists of a very basic pre-introduction to TWG
for non-specialists, where I sketch how complexes appear in the story, explain how
triangulated categories allow us to handle these complexes with minimal pain, and
show what symmetric forms and Witt groups become in this new language. The
case of a ring is our running example and follows us throughout this first part.

The expository style is very slow and detailed up to the point where I consider
the triangular gap sufficiently filled to be crossed with dry feet. From there on,
the pace gets faster with a “guide through TWG” which is simply a list of results
with references. A reader only interested in down-to-earth facts can directly skip
to Part II, which is a more standard overview of applications, essentially to Witt
groups of schemes. A certain number of results, by other authors as well, are
collected there and references to the literature are given.

I sometimes gave priority to simple and conceptual considerations, at the price
of having slightly less rigorous or less general statements than actually possible.
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Part I : Introduction to TWG for non-specialists

2. Genesis

The idea of considering complexes P• = · · · → Pi+1 → Pi → Pi−1 → · · ·
equipped with symmetric forms naturally emerged in at least two areas of mathe-
matics : differential topology and algebraic geometry. For the moment, by symmetric
complex we mean some complex P• with some mysterious sort of “symmetric form”,
basically relating P• and some mysterious sort of a dual of P• which we shall make
precise later on.

In differential topology, more precisely in surgery theory, symmetric complexes
come from Poincaré duality and these complexes consist of Z[π]-modules, where π
is the fundamental group of the manifolds under the scalpel. The theory of surgery
of manifolds was initiated by Milnor [19] and led to the development of L-theory by
Wall (see for instance [25] and [26]), Mischenko, and to the full extent by Ranicki
(see for instance [23] for a concise and purely algebraic approach to L-theory).

In algebraic geometry, the side of the story we are mainly concerned with here,
symmetric complexes appear in quite a different spirit. The complexes show up
for general reasons, involving direct images of modules, and then the symmetric
forms follow in a second step. Let us give a simple example instead of a general
theory. Let R be a commutative ring. Assume that R is noetherian and regular
to fix the ideas, i.e. any finitely generated R-module has a finite resolution by
finitely generated projective R-modules. Consider an ideal I ⊂ R and the quotient
π : R → R/I. As an intense meditation will show, this π is different from the π
considered above. Via π we can consider an R/I-module as an R-module and this
is a sound activity when comparing the modules over Spec(R) and over the Zariski
open Spec(R) \ V (I) = {p ∈ Spec(R)

∣∣ I 6⊂ p}. For instance, when I = R · f for
some f ∈ R, comparing modules over R and over Rf involves studying modules
killed by some power of f and in particular R/f -modules. The bad news is that a
projective R/I-module N , even N = R/I itself, is usually not projective anymore
when considered as an R-module. The simplest example is probably something like
R = Z or Z[ 12 ] and I = 3 ·R. The old solution to this old problem is then to replace
N by a projective resolution. Now, assume that N was secretly carrying some
good old symmetric form over R/I, then there is a good chance that the projective
resolution of N over R will carry a symmetric form, for a more complicated sense
of “symmetric form”. One can find in [20] an example of how these algebro-
geometrical questions of comparing forms over a scheme and an open subscheme
led to symmetric complexes.

Philosophically, those two motivations for symmetric complexes are quite dif-
ferent. In the first framework, the meaningful invariant is indeed some class in
some L-group of Z[π] (in case of doubt think “L-group:=Witt group”), depending
on the manifold M . This class gives us geometric information about M . In the
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second framework, the invariant is the Witt group itself (in case of doubt think
“Witt group:= L-group”). It is the whole group W(X) which might give us infor-
mation about the geometry of the scheme X. The question of inverting 2 is also
approached quite differently. In the first school, claiming that 2 is a unit is a suffi-
cient condition for immediate excommunication. In the second one, if we think our
schemes as being algebraic varieties over some ground field k, we basically renounce
to k being of characteristic 2, which is indeed a sin, but a venial one, especially
among quadratic form people. This inversion of 2, though, is of central importance
in what follows.

In both frameworks we are led to study morphisms ϕ : P•−→(P•)∗ from a
complex P• to its dual complex (P•)∗ whose definition is postponed to Section 4.
Beware that we should not expect the “non-degeneracy” of such a “form” ϕ to be
expressed by saying that ϕ is an isomorphism of complexes. This is because the
considered complexes only behave well up to homotopy. Thus the “non-degeneracy”
is expressed by saying that the form ϕ is a homotopy equivalence. Similarly, the
“symmetry” of the form, which reads ϕ∗ = ϕ in usual terms, will become : ϕ∗ is
homotopic to ϕ. In L-theory, even more is needed. In fact, one would need the
homotopy itself to be symmetric up to (higher) homotopy and the higher homotopy
to be symmetric up to (even higher) homotopy and so on. When 2 is invertible, these
higher homotopies are not necessary. Indeed, if ϕ is symmetric up to homotopy,
then ψ := 1

2 (ϕ + ϕ∗) will be strictly symmetric, not only up to homotopy, and ψ
will be homotopic to ϕ. So, if we invert 2, we can reduce the data of a symmetric
complex to a complex endowed with a symmetric homotopy equivalence to its dual.
This is explained with more details below.

Once born to the importance of complexes with symmetric forms, the mathe-
matician sometimes suffers a short postnatal depression : “My God, what am I going
to do with these ugly complexes that I cannot even write completely ? with those
morphisms which are only up to homotopy ? or worse, up to quasi-isomorphism...”
and so on. The loss of the notion of exact sequence, which is not well-behaved with
respect to homotopy of complexes, might finish to despair the neophyte and even
drive him to relapse. This apparent hairiness of the category of complexes is also
an old problem which has an old solution. Long ago, that is at the beginning of
the sixties, Grothendieck sent Verdier [24] to teach us the answer :

3. Triangulated categories

Triangulated categories offer an axiomatization of the derived category, that
is the category of complexes up to homotopy, or more precisely up to quasi-
isomorphism. Let us fix some notations. Let A := P(R) denote the category
of finitely generated projective (left) R-modules and let

Kb(P(R)),

and more generally Kb(A) for any additive category A, be the homotopy category of
bounded complexes of objects in A, with morphisms being morphisms of complexes
up to homotopy.

Recall that a (bounded) complex P• consists of a collection {Pi}i∈Z of objects of
A (such that Pi = 0 when i /∈ [−N,N ] for some N depending on P•) together with a



4 PAUL BALMER

collection of morphisms di : Pi → Pi−1 such that d2 = 0, which means di−1 ◦di = 0
for all i ∈ Z. A morphism of complexes f• : P•−→Q• consists of a collection
fi : Pi → Qi for all i ∈ Z such that d f = f d, which means dQ

i ◦ fi = fi−1 ◦ dP
i for

all i ∈ Z. This defines a category Chb(A) of bounded chain complexes in A.
Recall also that two morphisms of complexes f• , g• : P•−→Q• are homotopic

if there is a collection of morphisms εi : Pi → Qi+1 for all i ∈ Z such that f − g =
dε− εd, or more precisely fi − gi = dQ

i+1εi − εi−1d
P
i for all i ∈ Z. Such a collection

{εi}i∈Z is sometimes called a homotopy between f and g. The category Kb(A) has
the same objects as Chb(A), i.e. bounded complexes in A, but the morphisms are
the equivalence classes of morphisms up to homotopy. This category Kb(A) is the
prototype of a triangulated category.

A triangulated category K will first of all have to be additive (i.e. we have a
direct sum ⊕ and we can add morphisms). Moreover, K will be equipped with a
shift, a translation, a suspension, that is, a functor :

T : K−→K

which is additive and which is an equivalence, i.e. there exists a shift backwards, a
translation backwards, a de-suspension, T−1 : K−→K such that T−1T ∼= TT−1 ∼=
Id. In fact, in the example K = Kb(A), this T is really an isomorphism of cate-
gories, so we can write and think T−1T = TT−1 = Id. In this example, the shift
simply consists in moving a complex “to the left” and changing the sign of all the
differentials :

(degree 0) (degree 0)

T
(
· · · d2 // P1

d1 // P0
d0 // P−1

d−1// · · ·
)

:= · · ·−d1// P0
−d0 // P−1

−d−1 // P−2
−d−2// · · ·

Morphisms of complexes are simply shifted to the left with no sign added : T (f•)i :=
fi−1 for all i ∈ Z. The shift backwards T−1 is obvious.

Suppose that A is indeed an abelian category, like A =M(R) the category of
finitely generated (left) R-modules over a (left) noetherian ring R. Then on the
category of chain complexes Chb(A) with honest chain maps, not up to homotopy,
we have the notion of exact sequence, which is simply an exact sequence degree-wise.
Indeed Chb(A) is again an abelian category. Similarly, when A is only additive,
like for A = P(R), or is an exact category like the category of vector bundles
over a scheme, then Chb(A) still has the useful notion of exact sequences degree-
wise. Unfortunately, this is all ruined down by the “up to homotopy” politics. To
see this, one can prove that any monomorphism in Kb(A) must in fact be a split
monomorphism; hence the poverty in subtle short exact sequences.

The replacement of exact sequences is the notion of exact triangle, or distin-
guished triangle, that we explain now.

3.1. The mapping cone construction. An important construction in categories
of complexes is the following. Let u : A•−→B• be a morphism of complexes. Then
the mapping cone of u is a new complex Cone(u) defined as in the following diagram
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(see the third line) :

(degree n) (degree n-1)

A• =

u

��

· · · // An

dA
n //

un

��

An−1
//

un−1

��

· · ·

B• =

v:=

��

· · · // Bn

dB
n //(

0
1

)
��

Bn−1
//(

0
1

)
��

· · ·

Cone(u) :=

w:=

��

· · · // An−1 ⊕Bn

(−dA
n−1 0

−un−1 dB
n

)
//

(−1 0 )
��

An−2 ⊕Bn−1
//

(−1 0 )
��

· · ·

T (A•) = · · · // An−1

−dA
n−1 // An−2

// · · ·

in which we also define morphisms v : B−→Cone(u) and w : Cone(u)−→T (A).

In short, the differential of the mapping cone is
(
−d 0
−u d

)
whose square is easily

checked to be zero. We abstract the above data to any additive category K with
translation T as being a triple of objects and a triple of morphisms as follows :

A
u // B

v // C
w // T (A).

This is a triangle. Compare the last two diagrams to feel how the language of
triangulated categories could simplify the handling of complexes.

The above “mapping cone construction” turns out to be very useful in Kb(A),
even for A = P(R) which has only split exact sequences. In fact, we can prove
for instance that a morphism u : A•−→B• is a homotopy equivalence (i.e. an
isomorphism in our Kb(A)) exactly when the complex Cone(u) is split exact (i.e.
isomorphic to zero in Kb(A)). One can also prove that a composition z ◦ u is
homotopic to zero for some test morphism z : B•−→Z• if and only if there exists
a morphism z̄ : Cone(u)−→Z• such that z̄ ◦ v is homotopic to z :

A•
u //

if z u = 0   A
AA

AA
AA

A B•
v //

z

��

Cone(u) w //

∃ z̄
{{v

v
v

v
v

T (A•)

Z•

In terms of the category K = Kb(A) it says that the morphism v : B•−→Cone(u) is
almost a cokernel of u, except that we do not guarantee the uniqueness (even up to
homotopy) of the z̄ in the above story. One would say that v : B•−→Cone(u) is a
weak cokernel of u. Similarly, it can be shown that T−1(w) : T−1(Cone(u))−→A•

is a weak kernel of u. In vaguer terms, the mapping cone Cone(u) contains the
homological information about u (weak kernel, weak cokernel, detection of isomor-
phism).

The same will be true in “abstract” triangulated categories, but of course not
for any triangle. For instance, even without knowing yet what an exact triangle
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will be, the normally brained reader can guess that we do not expect a triangle like

0 // B // 0 // T (0)

to be exact unless B ' 0. So we have to distinguish those triangles which contain
the above kind of “homological information” among all the possible triangles. In the
case of Kb(A), those distinguished triangles are defined to be all the triangles which
are isomorphic to a triangle obtained, as above, by the mapping cone construction.

In abstract triangulated categories, we assume given a class of distinguished
triangles, also called exact triangles, and we require them to fulfil four axioms,
all of them very natural. We do not reproduce the axioms here and we refer the
reader to Section 1 of [3] to get a four-page “baise-en-ville of the triangulated
mathematician”. The original source is of course [24]. More important to us here
is the philosophy : we need complexes but we don’t like complexes, so we overcome
the apparent complication of Kb(A) by abstracting the important techniques into
the concept of triangulated category.

In particular, given a morphism u : A→ B in a triangulated category K there

is an object C and a distinguished triangle A
u // B

v // C
w // T (A) in K

(this is an axiom). One can prove from the axioms that the triple (C, v, w) is
unique up to non-unique isomorphism, once u : A → B is given. One can prove
that v : B → C is a weak cokernel of u, that T−1(w) : T−1(C) → A is a weak
kernel of u, and that C is isomorphic to zero if and only if u is an isomorphism.

3.2. The cone of a morphism. Given a morphism u : A→ B in a triangulated
category, a triple (C, v, w) as above, or sometimes just the object C, is called the
cone of u, out of nostalgia for the mapping cone of our good old complexes, which
now start to fade away in the distance.

4. Triangulated categories with duality

We now have a feeling of what a triangulated category is. In order to talk of
symmetric spaces and to define Witt groups, we need another kind of structure
on our category, namely we need a duality. This notion of duality is of course
not specific to triangulated categories and already appears for modules and for
vector spaces as we all know. Here, the duality will have to be compatible with the
triangulation. This is conceptually very simple but technically slightly complicated
by the presence of signs. Although we try to explain both the idea and the signs
simultaneously, the reader can very well ignore the signs in a first reading. We have
decided to discuss that here, since a fear of signs, not cured at an early stage, might
slow down a serious attempt to understand and use TWG.

As suggested in Section 2, when 2 is invertible, we can chop out the “higher
homotopies” from the data of a symmetric complex. This means that a symmetric
complex over a ring R will simply be an object P in Kb(P(R)) with an isomorphism
ϕ : P −→P ∗ in Kb(P(R)), which is symmetric ϕ∗ = ϕ also in Kb(P(R)). We now
want to make this precise. Again, we stress that L-theory cannot, as far as we know,
be defined over the triangulated category Kb(P(R)). This is a great application of
the invention of 0.5 : We can apply the relaxing philosophy presented in the previous
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Section, in order to simplify the question of symmetric complexes by formalizing it
into the triangular language. We proceed as above, that is, we explicit the example
of Kb(P(R)) or Kb(A) and then abstract what is really needed.

Consider an additive contravariant functor (−)∗ : Aop −→A on an additive
category A, like for instance (−)∗ = HomR(−, R) : P(R)

op −→P(R) the usual dual
on the category of finitely generated projective left R-modules over a ring R with
involution1. Such a functor induces a contravariant functor

(−)# : Kb(A)
op
−→Kb(A)

which is defined as follows

(degree 0) (degree 0)(
· · · d2 // P1

d1 // P0
d0 // P−1

d−1// · · ·
)#

:= · · ·
d ∗
−1 // P ∗

−1

d ∗
0 // P ∗

0

d ∗
1 // P ∗

1

d ∗
2 // · · ·

and on morphisms by (
(f•)

#)
i
:= (f−i)∗ for all i ∈ Z .

It is the obvious extension of an additive functor to Kb(−) using the fact that
Kb

(
Aop) ∼= Kb(A)

op
. Note that there are no signs hidden in this definition, except

of course the −i in indices which is not a sign in A but merely indicates the switched
reading direction, imposed by the the contravariance of (−)∗.

4.1. The opposite triangulation, or the first appearance of signs. The
above isomorphism Kb(A)

op ∼= Kb
(
Aop)

forces a triangular structure on Kb(A)
op

.
More generally, the opposite Kop

of a triangulated category K also has a triangula-
tion, which should agree with this example, and therefore involves some signs as we
explain now. Let K be a triangulated category. Then the translation T : K−→K
induces a translation T

op
: Kop −→Kop

defined by

T
op

(Ao) :=
(
T−1(A)

)o and T
op

(f o) :=
(
T−1(f)

)o

where Ao stands for the object A seen in Kop
and where f o : Ao → Bo in Kop

corresponds to f : B → A in K. In short, T
op

is T−1. One has to “reverse” the
translation in order to at least make sense of a triangle in Kop

. Indeed, a triangle

Ao
f o

// Bo
go

// Co ho
// T

op
(Ao)

is distinguished in Kop
if the following triangle is distinguished in K :

T−1(A)
−h // C

−g // B
−f // A

obtained by displaying the morphisms in reversed order : h, g, f , but with signs.
This is what we meant above : just because the fourth object must be the translation
of the first, imposes the definition of T

op
as being T−1. (This can be carefully

checked as a familiarizing exercise.)

1Exercise : When M is a left R-module, its dual M∗ is a priori rather a right R-module in a

natural way. One requires the ring R to have an involution σ : R→ R, σ(rs) = σ(s)σ(r), in order
to restore a left module structure on M∗ and more generally on any right R-module.



8 PAUL BALMER

We take this opportunity to recall that in a triangulated category K we can
change any two signs in a triangle but usually not the three of them. Rotat-
ing a triangle involves inserting a sign (this is an axiom), and so if the reader is
rather object-oriented than morphism-oriented (may Alexander forgive him !), we
can equivalently require the following triangle to be distinguished :

C
g // B

f // A
T (h)

// T (C).

Here the objects are in the reversed order : C,B,A, and the morphisms are slightly
mixed up, but no sign appears.

4.2. Lemma. Let A be an additive category. Then with the above triangulation,
Kb(A)

op
is isomorphic as a triangulated category to Kb

(
Aop)

.
In particular, for any additive functor (−)∗ : Aop −→A the induced functor

(−)# : Kb(A)
op −→Kb(A) described above sends distinguished triangles to distin-

guished triangles.
Proving this Lemma amounts to understanding the connection between the

mapping cone construction of Section 3 performed in Kb(Aop
) and the opposite of

the mapping cone construction performed in Kb(A). For an arbitrary morphism
u : A•−→B• there is an isomorphism between the complex Cone(uo) and something
like

(
Cone(u)

)o. In fact, this isomorphism is of degree one :

Cone(uo) '
(
T−1Cone(u)

)o
.

One has to check that this isomorphism is compatible with the morphisms v and
w defined in the mapping cone constructions. This is a long but straightforward
exercise.

Let us summarize the order of the sign choices. The above Lemma justifies
the choice of the triangulation on Kb(A)

op
. In turn this triangulation on Kb(A)

op

justifies the choice of signs in defining the triangulation on Kop
for any triangulated

category K.

4.3. Definition. A duality on a triangulated category K can be remembered as a
contravariant functor

(−)# : K
op
−→K

which is exact, i.e. sends a distinguished triangle to a distinguished triangle, and
such that

#2 = Id .

A precise definition is to be found in [3, § 2], where the notion of δ-duality for
δ = ±1 is given. A duality is simply a (+1)-duality. We will explain below how one
ends up studying δ-dualities, but first, let us see how the # of our example Kb(A)
is a duality in the above sense.

If we compute the functor #2 on Kb(A) we simply get a functor which sends
a complex P• to the same complex with a decoration ∗∗ everywhere. So, if assume
that we have a natural isomorphism can : IdP

∼−→ P ∗∗ for P ∈ A, then by applying
it degree-wise, we immediately get a natural isomorphism :

$ : IdKb(A)
∼−→ (−)# ◦ (−)# .
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In the special case A = P(R), this canP is defined as the usual identification
between a projective module and its double dual2. In the general case, we suppose
this isomorphism $ given on A from start.

4.4. Infinitely many dualities for the price of one. Assume you have bought
a triangulated category with duality (K,#) then in the definition of # being exact
you find that # sends distinguished triangles to distinguished triangles. For this to
make sense, you get in particular (see the definition of the opposite triangulation) :

# ◦ T−1 ∼= T ◦#.

In the example of Kb(A) this is even an equality : shift a complex to the right and
dualize it, you get the dual of the complex but shifted to the left. But now compute
like a beast :

(T ◦#)2 ∼= (# ◦ T−1) ◦ (T ◦#) ∼= # ◦# ∼←−
$

Id .

So you have discovered that T ◦# is also a duality ! And you conclude inductively
and enthusiastically that:

T i ◦# is again a duality for any i ∈ Z !

After applying the second fundamental principle of pedagogy : “Teach something
possibly wrong but understandable”, we have to say that unfortunately, life is more
complicated than we expect (this being the first principle). In fact, it is true that
T i ◦# squares to the identity for any i ∈ Z but T i ◦# is exact only when i is even.
This comes from the fact that the translation T : K−→K is not exact. Indeed,
applying three times the Rotation Axiom, one sees that T is skew-exact in the

sense that given a distinguished triangle A
u // B

v // C
w // T (A) the tri-

angle T (A)
T (u)

// T (B)
T (v)

// T (C)
T (w)

// T 2(A) is not distinguished but becomes

distinguished when changing all signs : T (A)
−T (u)

// T (B)
−T (v)

// T (C)
−T (w)

// T 2(A)
or equivalently only one of the signs.

In short, the slogan becomes : Given a triangulated category with duality
(K,#), we automatically inherit infinitely many triangulated categories with δ-
duality (K, T i ◦ #) for δ = (−1)i, where a δ-duality for δ = ±1 means a duality
when δ = 1 and a “skew-exact duality” when δ = −1. Still, in a first reading, one
can consider that we have infinitely many dualities on K and ignore the precise
definition [3, 2.2].

We will think of these ±1-dualities in the following order :

. . . T−2# T−1# # T 1# T 2# . . .

and might call T ◦# the next duality after #, or T−1 ◦# the previous duality.

2 For a ring R with involution σ, the canonical identification canP : P → P ∗∗ sends p ∈ P to
the homomorphism evp : P ∗ → R defined by evp(f) = σ(f(p)). The outside σ( . . . ) is sometimes

forgotten in the literature, but is needed for R-linearity.



10 PAUL BALMER

5. Triangular Witt groups

5.1. Symmetric forms. The notion of symmetric form has nothing to do with
the triangulation. As soon as you have a category with duality, you can consider
symmetric spaces, that are pairs (E,ϕ) formed of an object E of your category and
a symmetric isomorphism ϕ = ϕ# : E ∼→ E# from E to its dual. More carefully
written, ϕ = ϕ# ◦ $E where $E is the (given) identification between E and its
double dual E##. The isomorphism ϕ is called the form of the symmetric space
(E,ϕ). There is also immediately a notion of isometry, that is, an isomorphism on
the E-part which transports the form.

When the category is additive – e.g. triangulated – and when the duality is
additive as well, we can perform the orthogonal sum of two spaces, exactly as
usual. In cash, we have

(E,ϕ)⊥(F,ψ) :=
(
E ⊕ F,

(
ϕ 0
0 ψ

) )
.

The question is now to understand the collection of symmetric spaces, at least up to
isometry. To do that, we start by producing some cheap symmetric spaces, which
will be called neutral or metabolic. The Witt group will measure the rest : how
much information about symmetric spaces remains, apart from these cheap ones.

5.2. The symmetric cone of a symmetric morphism. That is where the
triangulation comes into the game. Let (K,#) be a triangulated category with
duality, that is, a (+1)-duality to fix the ideas. We have to assume here that 2
is invertible, in the obvious sense, see 6.1 if necessary. Suppose we are given a
morphism u : L−→T−1(L#) which is symmetric for the duality T−1 ◦# :

T−1(u#) = u .

Note that we use here another duality than the one we start with, namely the
“previous one”. Then, for any choice of a distinguished triangle starting with u

L
u // T−1(L#) v // C

w // T (L)

the “cone” C will carry a symmetric form for #. That is, you start with a mere sym-
metric morphism, preferably not an isomorphism (even zero u = 0 : L−→T−1(L#)
will do), but for the previous duality T−1#, then you can create a symmetric space
on the cone of u with respect to the considered duality #. This form on the cone of
u is unique up to isometry. How is this form defined then ? Just from the axioms !
In fact this symmetric space (C,ϕ) is characterized by the following commutative
diagram, in which the lines are distinguished triangles :

L
u //

1

��

T−1(L#) v //

1

��

C
w //

ϕ=ϕ#

��

T (L)

1

��
L

T−1(u#)

// T−1(L#)
w#

// C#

v#
// T (L).
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The first line is the distinguished triangle over u defining the cone of u, and the
second line is the dual of the first, slightly turned around by using the Rotation
Axiom. The left-hand square commutes because u is symmetric. So a fill-in map
ϕ : C → C# must exist (axiom again). Using 1

2 to replace ϕ by 1
2 (ϕ + ϕ#), we

can assume that ϕ = ϕ#. All this is explained in Theorem 2.6 of [3]. The term
“Theorem” might seem excessive here. It was awarded because this is the starting
point of Witt groups over triangulated categories, and not because of the difficulty
of the proof, which is in fact totally elementary. Moreover this form ϕ on C is also
proven there to be unique up to isometry. So it sounds reasonable to call it the
symmetric cone of the symmetric morphism u over L and to write it

Cone(L, u) := (C,ϕ) .

5.3. A first glimpse at triangular Witt groups. The above symmetric cone
construction can be generalized as follows. Consider for any i ∈ Z the monoid
Si of isometry classes of pairs (L, u) where L is an object and u is a symmetric
morphism u : L−→T i(L#), with u not necessarily an isomorphism. This Si is
an abelian monoid with orthogonal sum as operation. Then the above “symmetric
cone construction” gives us a series of maps ci : Si−→Si+1

· · · −→Si−1 ci−1

→Si ci

→Si+1−→· · ·

Note that ci(u) = 0 means precisely that Cone(u) ' 0, which, as we know, is
equivalent to ask u to be an isomorphism. So, the “kernel” (be careful : Si is only
a monoid not an abelian group) of ci is exactly the monoid of symmetric spaces we
are interested in, for the duality T i#. Since the cone of a symmetric morphism is
really a symmetric space, we get

c ◦ c = 0 .

The i-th Witt group will be in some sense the i-th homology group of the above
complex, except that these Si are monoids, not groups, and thus it is not so clear
what the right notion of “homology” should be. We give details below.

5.4. Watch the signs ! In fact, the above is again essentially true but slightly
too optimistic. The symmetric cone construction Cone(L, u) we have defined exists
because the 2x4 diagram of 5.2 was as it was. Had we started with a skew-duality
#, the story would of course involve a sign. This is because the duality was used
to deduce the exactness of the second line from the exactness of the first line. If
the duality is skew-exact instead of exact as assumed above, there will be a sign
in this second line. The details are presented in the reference already mentioned :
Section 2 of [3] and the bottom line is the following.

If # was a skew-duality instead of a (+1)-duality (and this generality has to be
considered to define the above ci for all i ∈ Z), then the cone Cone(L, u) = (C,ϕ)
of a symmetric u : L → T−1(L#) will be skew-symmetric for # ! This means
ϕ# = −ϕ. In other words, our ci : Si−→Si+1 described above only works for i
odd (i+ 1 even) and actually goes ci : Si−→Si+1

− for i even, where the little sign
“−” down there means skew-symmetric forms.

This symmetric cone construction is responsible for the connection between the
a priori independent notions of δ-exactness of the duality (δ = ±1) and ε-symmetry
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of forms (ε = ±1). One can live with this and keep signs everywhere. This was
indeed the naive notation used in the original [2]. There is a way though of hiding
the signs under the carpet, which was suggested to me by Charles Walter, and has
been consistently used ever since [3] as well as in the other authors’ articles. We
come to this in 5.7, after strengthening in 5.6 the definition of triangulated category
with duality.

5.5. No distinction between symmetric and skew-symmetric forms. There
is an old trick to avoid speaking of ±1-symmetric forms : hide the sign ±1 in the
identification $ : Id ∼−→ # ◦#. If one replaces $ with −$ then a skew-symmetric
form becomes symmetric. Using this, there is a way of making the above symmetric
cone construction really going from the i-th duality to the (i+ 1)-st duality and it
is to define the (i + 1)-st duality in a different way depending on the parity of i.
To do that, we need to include the identification $ in what we call a triangulated
category with duality. So :

5.6. The full definition. If δ = ±1, a triangulated category with δ-duality is not
only a pair (K,#) but a triple (K,#, $) formed of a triangulated category K, a
δ-exact duality # : Kop −→K and a chosen identification $ : Id ∼−→ #2. See details
in [3, Def. 2.2].

5.7. Shifting the dualities. Let (K,#, $) be a triangulated category with δ-
duality as above. The shifted triangulated category with (−δ)-duality is the triple

T (K,#, $) :=
(
K , T ◦# , (−δ) ·$

)
.

Note that this duality T ◦# is now (−δ)-exact, not because of the −δ in front of
$ but because of the skew-exactness of the translation T . This is also called the
next duality, or the first shifted duality.

This definition is made so that the above “symmetric cone construction” really
associates to any symmetric morphism (L, u : L−→L#) for the duality (K,#, $)
a symmetric space for the next duality T (K,#, $).

The above process is clearly invertible in a unique way and we set

T−1(K,#, $) :=
(
K , T−1 ◦# , δ ·$

)
the previous duality or the duality shifted backwards, which is also (−δ)-exact when
# is δ-exact. So the exactness does not come from the sign in front of $ ! Let
us repeat slowly : shifting the dualities from # to T#, T 2#, and so on, changes
exactness at each step simply because T is skew-exact. So much for exactness, and
nothing more is needed on that side. On the side of $, we put signs in a strange
way to make the above “symmetric cone construction” smoother. Indeed, when
going from # to T#, we change the sign of $ when # is exact and we do not
change that sign when # is skew-exact. The rest is a little game with signs and
we spend time explaining that not because of any mathematical complexity but to
avoid the reader getting lost because of that.

We obtain a series of shifted dualities T i(K,#, $) for i ∈ Z and we clearly have
T i

(
T j(K,#, $)

)
= T i+j(K,#, $) for any i, j ∈ Z. We leave it as an exercise to

check that
T i(K,#, $) = (K , T i# , εi ·$) ,
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with εi = (−1)
i·(i+1)

2 · δi, is a triangulated category with ((−1)i · δ)-exact duality.
Since these two signs are 4-periodic in i, we have in other words :

T i(K,#, $) =


(K , T i# , $ ) if i ≡ 0 modulo 4

(K , T i# , (−δ) ·$) if i ≡ 1 modulo 4

(K , T i# , −$ ) if i ≡ 2 modulo 4

(K , T i# , δ ·$ ) if i ≡ 3 modulo 4

which is a triangulated category with


δ-exact duality if i ≡ 0 modulo 4

(−δ)-exact duality if i ≡ 1 modulo 4

δ-exact duality if i ≡ 2 modulo 4

(−δ)-exact duality if i ≡ 3 modulo 4.

Note finally that T i(K,#, $) and T i+2(K,#, $) have the same exactness (both
exact or both skew-exact) but opposite symmetry (one with εi$ and the other one
with − εi$). In particular, T i(K,#, $) and T i+4(K,#, $) have same exactness
and same symmetry. We will see that the whole theory is indeed 4-periodic.

5.8. Neutral spaces and Witt groups. Given a triangulated category with δ-
duality (K,#, $) the cone Cone(L, u) of any symmetric morphism u : L−→T−1L#

for the previous duality is a symmetric space for #. Such a symmetric space is called
neutral or metabolic. The Witt group of (K,#, $)

W(K,#, $)

is defined to be the quotient of the abelian monoid of symmetric spaces by the
submonoid of neutral spaces. See details in [3, § 2]. The quotient of an abelian
monoid M by a submonoid N ⊂ M is simply the monoid of equivalence classes of
M modulo the relation m ∼ m′ when there exist n, n′ ∈ N such that m + n =
m′ + n′. We shall denote by [E,ϕ] the class of a symmetric space (E,ϕ) modulo
this equivalence relation.

In other words, W(K,#, $) is an abelian group (see below why it is a group and
not only a monoid) given by generators and relations as follows. Take a generator
[E,ϕ] for any symmetric space (E,ϕ) and impose the two relations :

1. [E,ϕ] = [E′, ϕ′] if the spaces (E,ϕ) and (E′, ϕ′) are isometric,

2. [(E,ϕ)⊥(E′, ϕ′)] = [E,ϕ] + [E′, ϕ′],

3.
[
Cone(L, u)

]
= 0 for any morphism u : L−→T−1L# which is symmetric

for the previous duality T−1(K,#, $), or equivalently : [E,ϕ] = 0 for any
neutral space (E,ϕ).

5.9. Hyperbolic spaces. Why is this quotient of monoids a group in the first
place ? This is because of the freedom to choose arbitrarily “degenerate” symmetric
morphisms u : L→ T−1L# to define neutral spaces. In fact, if we take u = 0, the
symmetric cone is just the hyperbolic space L ⊕ L# with the usual form. Since 2
is assumed to be invertible, for any symmetric space (E,ϕ), the orthogonal sum
(E,ϕ)⊥(E,−ϕ) is hyperbolic. This last fact is indeed true in any additive category
in which 2 is invertible. (This would still work without 1

2 though : one can prove
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that (E,ϕ)⊥(E,−ϕ) is one symmetric cone of (E, 0), the latter not being unique
up to isometry anymore. See 5.12.)

5.10. Lagrangians. If we unfold the definition of a symmetric space (E,ϕ) being
the symmetric cone of a symmetric morphism (L, u), we see an obvious connection
with the classical definition of a metabolic space. A metabolic space (E,ϕ) in an
exact category (which is the typical space to kill when constructing the “classical”
Witt group à la Knebusch), is a symmetric space such that there exists an exact
sequence :

M // α // E
α∗ϕ // // M∗.

This pair (M,α) is called a Lagrangian of (E,ϕ). Similarly here, the right part of
the 2x4 diagram of 5.2 can be re-written as a piece of exact triangle :

M
v // C

v#ϕ // M#

where we put M := T−1(L#) and used w = v#ϕ. This means that the space
(C,ϕ) has a Lagrangian, in a triangular sense of the term : the (symmetric) exact
sequence is now replaced by a (symmetric) exact triangle. See more on this in [3,
Def. 2.12] or unfold the details to familiarize yourself with triangular dualities.

5.11. The shifted Witt groups. When you have a triangulated category with
δ-duality (K,#, $), you immediately obtain infinitely many Witt groups :

Wi(K,#, $) := W
(
T i(K,#, $)

)
called the i-th shifted Witt group of (K,#, $) for any i ∈ Z.

5.12. What about 2 not invertible ? There is no guaranteed existence nor
uniqueness of the “symmetric cone” anymore, but we can still define a neutral
space as being one which fits in a 2x4 diagram as in 5.2. The Witt group will still
be a group, even if (E,ϕ)⊥(E,−ϕ) is not really hyperbolic, but only split metabolic.
The real problem is that I have no idea if a group defined in this way coincides with
“usual” Witt groups. I have no idea either if the cohomological behaviour discussed
below can be established without 1

2 .

5.13. Symmetric forms in categories of complexes. Let us consider our run-
ning example (K,#, $) where K = Kb(A) is the homotopy category of (A, ∗, can)
an additive category with duality ∗ : Aop −→A, where # is derived from ∗ , and
where $ is can in each degree. For instance, A can be the category of finitely
generated projective R-modules P(R). All this was explained in Sections 3 and 4
above.

Fix an i ∈ Z. A symmetric space (E,ϕ) in T i(K,#, $) consists of two things :
1. A bounded complex E = P• ∈ Chb(A). Note that we do not impose a priori

a global restriction on the size of the support of P•, except that it must be
finite, of course.

2. A symmetric form, that is, a homotopy equivalence ϕ : P•−→T i(P•
#) which

is symmetric with respect to the i-shifted $, which is $i := (−1)
i·(i+1)

2 ·$.
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Set εi = (−1)
i·(i+1)

2 . For i ≡ 0, 1, 2, 3 modulo 4, we have εi = 1,−1,−1, 1 respec-
tively. Explicitly, our symmetric form ϕ is a morphism of complexes as follows :

degree n

P =

ϕ ϕ#◦$i
P

��

· · · // Pn+1
d //

ϕn+1 εi(ϕ−n+i−1)
∗

��

Pn
d //

ϕn εi(ϕ−n+i)
∗

��

Pn−1
//

ϕn−1 εi(ϕ−n+i+1)
∗

��

· · ·

T i(P#) = · · · // (P−n+i−1)∗
(−1)id∗

// (P−n+i)∗
(−1)id∗

// (P−n+i+1)∗ // · · ·

where we represent ϕ on the left of the vertical arrows and ϕ# ◦ $i on the right.
We require the morphism ϕ to be a homotopy equivalence and the morphisms ϕ
and ϕ#$i to be homotopic to each other. Using 1

2 , we can take the mean between
ϕ and ϕ#$i and assume that ϕ is strongly symmetric, i.e.

ϕn = εi · (ϕ−n+i)∗ for all n ∈ Z

or equivalently that ϕ is already symmetric in Chb(A) and not only in Kb(A). In
our triangulated category Kb(A), this new form 1

2 (ϕ+ϕ#$i) is indeed equal to ϕ.
Both are the same morphism from P to T i(P#) in Kb(A) !

Let us give a special example for i = 1 for instance. In that case εi = −1.
Suppose moreover that our complex is bounded in degrees 1 and 0. Then a form
which has been replaced by the mean with its dual looks as follows :

degree 0

P =

ϕ

��

· · · // 0 //

��

P1
d //

α

��

P0
//

−α∗

��

0 //

��

0 //

��

· · ·

P# = · · · // 0 // (P0)∗ −d∗
// (P1)∗ // 0 // 0 // · · ·

where α := ϕ1 = −ϕ∗0. Requiring that the form ϕ is non-degenerate, i.e. requiring
that ϕ is a homotopy equivalence, exactly means that its cone

· · · // 0 // P1

(−d
−α

)
// P0 ⊕ P ∗

0

(α∗ −d∗ )
// P ∗

1
// 0 // · · ·

is a (split) exact complex. The reader can do the exercise and will see that P1

turns out to be a second Lagrangian in the skew-symmetric hyperbolic form over
P0 ⊕ P ∗0 , which of course already has P0 as a Lagrangian. This produces then a
space with two Lagrangians, sometimes called a formation. It was indicated in [5,
Lem 3.2] that any class in W1(A) is the class of a form on such a short complex
of length 1. This is known to L-theorists. More generally, the connection between
triangular Witt groups and L-groups, when both are defined, that is, over additive
Z[ 12 ]-categories, is going to appear in Walter [27].

The explicit construction of the symmetric cone can also be unfolded in this
example of Kb(A). This is described with some details in [4, 2.10].



16 PAUL BALMER

5.14. Example. Here is a well-known example of a complex which has to do
with symmetric forms. Let (R,m) be a regular local ring of dimension d and let
m =< x1, . . . , xd > be a regular sequence of parameters.

Assume that d ≡ 1 modulo 4 for instance and write d = 2e + 1 with e even.
Consider the usual Koszul complex but written in a zig-zag, i.e. half of it on the
first line and half of it on the second line, with the differential “in the middle”
written vertically in degree 0 :

degree 0

· · · 0 // R( d
d ) //

��

· · · // R( d
e+2 ) //

��

R( d
e+1 ) //

��

0 //

��

· · · // 0 //

��

0 //

��

0 · · ·

· · · 0 // 0 // · · · // 0 // R( d
e ) // R( d

e−1 ) // · · · // Rd // R // 0 · · ·

Now think of the first line, completed with zeros as above, as a complex E ∈
Kb(P(R)), and think of the vertical maps as a morphism ϕ : E → E#. This
morphism is not a homotopy equivalence. Why ? Just compute the cone ! This
is nothing else than the Koszul complex itself, which is a resolution of the residue
field κ := R/m, and in particular has non-zero homology.

Nevertheless, there is an open subscheme U := Spec(R) \ {m}, the so-called
punctured spectrum of R, on which the module κ is zero, i.e. on which ϕ becomes a
quasi-isomorphism. We haven’t talked about quasi-isomorphisms so far, but there
is a nice triangulated category Db(VBU ) of bounded complexes of vector bundles
over U , with quasi-isomorphisms inverted (see details in the next Remark). No need
for a new story : such categories are triangulated categories with duality and the
above definitions make sense. This means that by restricting the above (E,ϕ) to the
open U , we find a symmetric space in the triangulated category Db(VBU ). It is a
general result of TWG, which we recall below, that this will then define an element
in the usual Witt group W(U). The localization theorem will show that this class
is not in the image of W(R)−→W(U), which was a rather unpredicted fact : even
if an isomorphism in dimensions 2, 3 and 4, the restriction W(R)−→W(U) is only
injective with non-zero cokernel in dimensions 1, 5, 9, . . . in which cases one can
show that the cokernel of W(R)−→W(U) is isomorphic to W(κ). See [8, Thm 9.1]
or [6].

Let us finally say that the assumption that d ≡ 1 modulo 4 is indeed hidden
in the fact that we really need ϕ to have the right symmetry. This is not visible
above because we haven’t made the Koszul complex explicit, or in other words,
we haven’t explicitly explained how the second line was the dual of the first. This
requires some care and is the reason for requiring e to be even in d = 2e+1. By the
way, the case d ≡ 3 modulo 4 also provides us with some class in W2(U) = W−(U),
which is non-zero and hence does not extend to W−(R) since the latter is zero (the
minus sign indicates Witt groups of skew-symmetric forms).

5.15. Derived categories. In the last example appeared another type of trian-
gulated category, slightly more involved than Kb(A), namely Db(A), the derived
category of A. This category is in fact needed when A is homologically more sub-
tle than an additive category, that is, when there are in A some kind of “exact
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sequences” which do not split. The simplest example is A an abelian category,
like categories of modules over a ring. More generally A could be an exact cate-
gory in the sense of Quillen [22], like the category VBX of vector bundles over a
scheme X. In these cases, something painful happens with Kb(A), namely to the
natural functor A → Kb(A) which sends everything to complexes concentrated in
degree zero. In fact, this functor does not necessarily send an exact sequence in
A to a distinguished triangle in Kb(A). Pretty bad for our motto : distinguished
triangles replace exact sequences, no? This functor would send exact sequences
to distinguished triangles if quasi-isomorphisms were isomorphisms in Kb(A). (A
quasi-isomorphism is a morphism of complexes which is an isomorphism in homol-
ogy.) This is the conceptual reason for inverting quasi-isomorphisms and creating
out of Kb(A) a new triangulated category Db(A) := Kb(A)[quasi-isos−1]. Apart
from this conceptual reason, there is a practical reason for considering Db(A) and it
is the fact that these derived categories are the right framework for derived functors,
but this is another story.

When A has a duality (−)∗ : Aop −→A which is moreover exact in the sense
that it preserves the (now possibly more subtle) exact sequences of A, then the
functor # : Kb(A)

op −→Kb(A) preserves quasi-isomorphisms. Hence it localizes
into a unique functor still written # : Db(A)

op −→Db(A), which is easily seen to
be again a duality. Since we have a general theory of Witt groups for triangulated
categories with duality, it will apply to this one too. This is the source of derived
Witt groups of schemes for instance, and more generally of derived Witt groups of
exact categories with duality, as defined in [4, § 2].

6. Guide through TWG

Here is a list of general facts with references to [3] and [4] where a detailed
treatment is already available. These are central facts but can be considered as a
“black box” by a customer only interested in applications.

6.1. The 1
2 -assumption. We have to assume below that the additive categories

under consideration “contain 1
2” which means they are Z[ 12 ]-categories, i.e. that we

can divide any morphism by 2 in a unique way. For categories obtained from a ring
R for instance, this means that 1 + 1 is unit in R.

6.2. Periodicity. First of all, for any triangulated category with duality (K,#, $)
the triangular Witt groups are 4-periodic :

Wi ∼= Wi+4 for all i ∈ Z

with the isomorphism being given by the double shift T 2 : K−→K. See if neces-
sary [3, Prop 2.14]. One can if fact prove that Wi+2(K) is isomorphic to the i-th
Witt group but of skew-symmetric forms : Wi(K,−$). In short, Wi and Wi+2

classify forms for the same duality but for opposite symmetries. There is more
information about shifted dualities and signs in [4, 5.1].
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6.3. Agreement with usual Witt groups. This is where we connect triangular
results to classical results. The most general “classical” framework is the one of an
exact category with duality. Such a category has a derived category with duality as
mentioned in Remark 5.15 and if it contains 1

2 (see 6.1), then the 0-th Witt group
of its derived category (triangular world) is naturally isomorphic to the usual Witt
group (classical world). Of course this means that triangular Witt groups generalize
even more classical Witt groups, like Witt groups of schemes, Witt groups of rings
with involution, or simply Witt groups of fields.

6.4. The example of local rings and fields. If R is a local commutative ring
containing 1

2 then Wi(R) = 0 unless i ≡ 0 modulo 4, see [4, Thm 5.6]. This holds
in particular for R a field of characteristic different from 2. This result can be
extended to semi-local commutative rings, as will appear in [7].

6.5. Weak Witt cancellation. It is not true “classically” that a stably metabolic
space is metabolic. It is true for triangulated categories. More precisely, if (E,ϕ)
is a space such that its class [E,ϕ] ∈ W(K) is zero then (E,ϕ) is neutral. This is
[3, Thm 3.5]. In particular, if two spaces (E1, ϕ1) and (E2, ϕ2) are stably isometric
then they are not necessarily isometric but (E1, ϕ1)⊥(E2,−ϕ2) is neutral.

♥ ♥ ♥

6.6. The 12-term periodic long exact sequence. There is a localization the-
orem in TWG, which is the heart of the whole story. It requires the notion of
“localization of triangulated categories with duality” and is in fact the main goal
of [3], see in particular [3, Thm 6.2 and 6.8]. This produces long exact sequences
of localization analogous to what is known in K-theory for instance. The input for
such a localization exact sequence is a short exact sequence of triangulated categories
with duality

J �K�L

by which we mean the following : K is a triangulated category with duality, J is
a triangulated thick subcategory which is stable under the duality and L is the
quotient K/J , i.e. the localization S−1K of K with respect to the class S of those
morphisms whose cone belongs to J . Requiring J to be thick in K simply means
that for A,B ∈ K if A ⊕ B ∈ J then A,B ∈ J . Associated to this short exact
sequence we get a long exact sequence of Witt groups :

· · · −→Wi−1(L)−→Wi(J )−→Wi(K)−→Wi(L)−→Wi+1(J )−→· · ·

which is 12-term periodic because of the 4-periodicity of Wi in i. The connecting
homomorphisms Wi(L)−→Wi+1(J ) are defined explicitly and heavily rely on the
above “symmetric cone construction”, see [3, § 5]. Even before checking all the
details in loc. cit., the reader can get the slogan of the above result : to a short
exact sequence of triangulated categories is associated a long exact sequence of Witt
groups.

♥ ♥ ♥
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6.7. The spectral sequence. Once we have a long exact sequence associated
to any thick inclusion J ⊂ K as above, we immediately and quite formally get
a spectral sequence for any filtration of K, for instance for a finite filtration like
0 = Jm ⊂ · · · ⊂ J1 ⊂ J0 = K, in which case the spectral sequence starts with the
Witt groups of the quotients Jp/Jp+1 and converges to the Witt groups of K. This
is explained in [8, § 3].

6.8. Sublagrangians. In a triangulated category, a sublagragian of a space (E,ϕ)
is a morphism α : L → E such that α# ϕα = 0. This means that the form ϕ
“restricted to L” via α is zero. Note that we use here any morphism L→ E, unlike
what happens in the classical frameworks of projective modules or of vector bundles
where we would only consider morphisms L�E which are admissible monomor-
phisms. Then, mimicking the classical construction, one could try to “remove” the
sublagrangian L from the form (E,ϕ), up to Witt-equivalence. Slightly more pre-
cisely, one tries to define a symmetric form over an object like L⊥/L, in such a way
that this new symmetric space defines the same class as (E,ϕ) in the Witt group.
This is indeed a slightly more complicated question in triangulated categories, due
to the non-uniqueness of the “fill-in” map, making the definition of the form on
L⊥/L rather technical. For an introduction to these questions, see [3, § 4].

6.9. Witt groups are K0-like. We end Part I by a non-mathematical comment.
By their very definition, triangular Witt groups are “K0-like” : they are defined by
generators and relations, in a way which is reminiscent of the analogous definition
of K0. Unlike the higher K-groups Ki, the shifted Witt groups Wi have a purely
algebraic definition which does not require some space whose i-th homotopy group
would be Wi. On the other hand, there is a localization long exact sequence, which
sometimes led us to call these groups higher and lower Witt groups. In the present
state of the author’s understanding, this might be misleading and we should stick
to the terminology of shifted Witt groups.

Part II : Survey of applications

7. Derived Witt groups of schemes

7.1. General assumptions on our schemes. In this second part, we consider
schemesX and assume once and for all that 1

2 ∈ Γ(X,OX). We also assume without
further mention that all the considered schemes are noetherian.

A reader who is not familiar with the language of schemes should have two
examples in mind : X an algebraic variety over a ground field k of characteristic
different from 2, or X = Spec(R) the spectrum of a commutative noetherian ring
R containing 1

2 .
We shall abbreviate by regular scheme, a scheme which is noetherian, separated

and has regular local rings. A noetherian (local) ring is regular if any finitely
generated module has a finite resolution by finitely generated projective modules.
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7.2. Various definitions of Witt groups via derived categories. Given a
scheme X, we can consider at least two kinds of derived categories associated to
it. One is obtained from coherent OX -modules, which are the finitely generated
modules in the affine case. The other one is obtained from vector bundles over
X, or locally free coherent OX -modules, which are the finitely generated projective
modules in the affine case. These two different possibilities should remind us of
what happens with G- and K-theory respectively.

Let us fix some notations. Let Db(CohX) be the derived category of coherent
OX -modules and Db(VBX) be the derived category of vector bundles overX. There
is a natural functor Db(VBX)−→Db(CohX) which is an equivalence when X is
regular.

For defining triangular Witt groups, a triangulated category is not enough : we
also need a duality. The duality on Db(VBX) is obvious : it is just derived from
the duality HomOX

(−,OX) on VBX , as we saw above in the case of projective
modules. The Witt groups obtained this way are called the derived Witt groups of
the scheme :

Wi(X) := Wi
(
Db(VBX)

)
and were first introduced in [2]. The Wi with i ≡ 0 mod 4 coincide with Knebusch’s
classical Witt group of schemes [18] by 6.3. The Wi with i ≡ 2 mod 4 coincide
with classical Witt groups of skew-symmetric forms. The W1(X) and W3(X) are
new. Note however that Charles Walter has a formation-style description of those
groups by generators and relations, see [27].

On the other side, the side with “G-theoretic” flavour, the triangulated category
Db(CohX) does not always carry a duality. There is a duality when the OX -module
OX has a finite resolution by injective OX -modules. This is the case when X is
Gorenstein of finite Krull dimension. See more on this in Gille [12]. In fact,
since these injective modules are not coherent in general, the right framework is
the category Db

CohX
(QcohX) of bounded complexes of quasi-coherent OX -modules

having coherent homology. Since our schemes X are assumed to be noetherian, the
natural functor Db(CohX)−→Db

CohX
(QcohX) is an equivalence of categories and

we will stick to Db(CohX) to avoid heavy notations. The Witt groups obtained in
this second way are called the coherent (derived) Witt groups of the scheme :

W̃ i(X) := Wi
(
Db(CohX)

)
.

Note that HomOX
(−,OX) does not define a duality on coherent or quasi-

coherent module, since the double dual is not the identity (think of R-modules
already with R = Z[ 12 ]). This new duality on the derived category is an important
idea of Alexander Grothendieck.

7.3. Functoriality. Of course, given a morphism of schemes f : Y → X we have
an exact functor f∗ : Db(VBX)−→Db(VBY ) which is induced from VBX −→VBY ,
E 7→ f∗(E) = OY ⊗OX

E. These functors are compatible with the dualities and
hence induce Witt group homomorphisms : Wi(X)−→Wi(Y ). In particular, if
U ↪→ X is an open subscheme, we have a restriction Wi(X)−→Wi(U).

The functoriality of W̃ i(X) is more tricky and works essentially only for flat
morphisms. The case of an inclusion U ↪→ X still qualifies though.
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7.4. Coherent Witt groups, regular schemes, or perfect complexes ?
As in G- and K-theory, the coherent Witt groups behave well with localization

and homotopy invariance. To be sure that they have something to do with the
classical group of Knebusch, we need derived Witt groups of vector bundles. The
latter are also better behaved with respect to functoriality. When both coincide,
everything is nice and therefore, in the sequel, we assume most of the time that X
is regular. We will try to indicate when we can drop the regularity assumption at
the price of working with coherent Witt groups.

In K-theory, Thomason used Grothendieck’s perfect complexes to have a con-
struction which is close enough to K-theory but behaves better with respect to
localization, like G-theory does. There is a duality on perfect complexes. The
problem is that we need idempotent completion to express localization and Witt
groups do not behave well with respect to idempotent completion (another instance
of their K0-attitude).

8. A cohomology theory

8.1. Comment on localization. Why do we introduce and study triangular Witt
groups if all of them have a “classical” analogue ? First, we have the example of
coherent Witt groups, which are really triangular and not classical, as explained
above. But in fact, the real advantage is that the triangular framework is more
flexible than the classical framework. The localization theorem is the best example
of this flexibility : if U ⊂ X is an open subscheme of our scheme X, there is no
good description of the exact category of vector bundles over U as a “quotient” or a
“localization” of the exact category of vector bundles over X, even if X is regular.
The biggest problem is the absence of an interesting “kernel” category of vector
bundles over X which would vanish over U , since this kernel is often zero, at least
whenX is connected. This rigidity of exact categories explains why the Waldhausen
categories of complexes or even the associated derived categories Db(VBX) and
Db(VBU ) are better suited for localization purposes. To avoid speaking of perfect
complexes, we now assume for simplicity that X is regular. Then the functor

Db(VBX)−→Db(VBU )

is a “quotient” of triangulated categories. That is, there is a “kernel” (defined
below)

Db
Z(VBX) ⊂ Db(VBX),

such that the composition Db
Z(VBX)−→Db(VBX)−→Db(VBU ) is zero and such

that the induced functor

Db(VBX)
/

Db
Z(VBX)−→Db(VBU )

is an equivalence of categories.
Here Z := X − U is the closed complement of U , and Db

Z(VBX) is defined
precisely as a kernel, i.e. it is the full subcategory of Db(VBX) on those complexes
which become isomorphic to zero in Db(VBU ). In other words, Db

Z(VBX) is the
full subcategory of Db(VBX) on those complexes whose homology is concentrated
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on the closed subset Z. The above quotient Db(VBX)
/

Db
Z(VBX) is a special case

of the localization of triangulated categories with duality mentioned in 6.6. The
duality actually restricts to Db

Z(VBX) because, for a complex P ∈ Db(VBX), the
condition P ∈ Db

Z(VBX) amounts to check (P )x ' 0 in Db(VBOx) for all x ∈ X−Z
and the latter condition is stable by passage to the dual since (P#)x ' ((P )x)#.

8.2. Witt groups with support. These groups were introduced in [5, § 1] and
are defined as follows. Let X be a scheme and Z ⊂ X be a closed subset. (Recall
the assumptions of 7.1.) Consider the triangulated category Db

Z(VBX) with the
duality restricted from Db(VBX). We define the i-th derived Witt group of X with
supports in Z by

Wi
Z(X) := Wi

(
Db

Z(VBX)
)
.

Similarly, the coherent Witt groups with supports are defined for X Gorenstein of
finite Krull dimension [12] as

W̃ i
Z(X) := Wi

(
Db

Z(CohX)
)

with a similar definition of Db
Z(CohX) := Ker

(
Db(CohX)−→Db(CohU )

)
.

In these examples, we see how triangulated categories which are not derived
categories of vector bundles can be used to define new Witt groups, which have no
classical interpretation a priori. The following long exact sequence is then a direct
consequence of the localization long exact sequence 6.6.

8.3. Theorem. Let X be a regular scheme and let U ⊂ X be an open subscheme
with closed complement Z = X − U . Then there is a natural long exact sequence

· · · −→Wi−1(U)−→Wi
Z(X)−→Wi(X)−→Wi(U)−→Wi+1

Z (X)−→· · ·

See [5, Thm 1.6]. This can be thought of as a result for coherent Witt groups as
in [12, Thm 2.19], regularity being used here to replace W̃ i by Wi.

8.4. Flat excision. Let Z ⊂ X be a closed subset of a regular scheme X and let
f : Y → X be a flat morphism from another regular scheme Y , such that f induces
an isomorphism of schemes f−1(Z) ∼→ Z, where those closed subsets are endowed
with the reduced scheme structure. An example of this situation is an inclusion
V ↪→ X of an open subscheme containing Z, which means that X is covered in the
Zariski topology by V and U := X−Z. Another example appears in the Nisnevich
topology as explained in [4, Rem 2.6].

For such a flat morphism f : Y → X such that f−1(Z) ∼→ Z, the functor
f∗ : Db(VBX)−→Db(VBY ) induces an equivalence of categories :

f∗ : Db
Z(VBX)−→Db

f−1(Z)(VBY ) .

So, simply because they are defined on the triangular level, the Witt groups with
supports are isomorphic :

f∗ : Wi
Z(X) ∼−→Wi

f−1(Z)(Y ) for all i ∈ Z .

Let us stress this little miracle : simply because the theory “factors” via triangu-
lated categories, it satisfies flat excision. Why ? Because, so to speak, the derived
categories themselves satisfy flat excision. This is explained in [5, § 2], where the
following immediate corollary is also to be found.
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8.5. Theorem. Let X = U ∪ V be an open cover of a regular scheme. Then there
is a Mayer-Vietoris long exact sequence :

· · · Wi−1(U ∩ V )−→Wi(X)−→Wi(U)⊕Wi(V )−→Wi(U ∩ V )−→Wi+1(X) · · ·

8.6. Dévissage and transfer. The above result is an example of a useful theorem
which can be obtained from the localization long exact sequence 8.3, but without
explicitly computing the “relative Witt groups” Wi

Z(X). Nevertheless, it is inter-
esting to ask if those groups with supports in Z have something to do with some
Witt groups of Z. This question is not answered in complete generality yet, but
there are answers in the affine case at least, which can be found in [12], whose main
result is the following.

8.7. Theorem. (S. Gille) Let R be a regular Z[ 12 ]-algebra of finite Krull dimension
and J an ideal generated by a regular sequence of length r. Assume that R/J is
also regular. Then for all i ∈ Z there is an isomorphism :

Wi(R/J) ∼−→Wi+r
J (R)

where of course Wi
J(R) means Wi

Z(X) for Z := Spec(R/J) ↪→ Spec(R) =: X.

8.8. Twisted dualities. Let X be a scheme and let L be a line bundle over X.
Then there is a so-called twisted duality on vector bundles which is defined by
(−)∗ ⊗ L (using L∗ ⊗ L ' OX). This induces a twisted duality on Db(VBX) as
well, and hence produces derived Witt groups, with supports and with possibly
twisted dualities. So at this point, we can play with the following decorations :

Wi
Z(X,L)

where i ∈ Z or Z/4, where Z is a closed subset of X and where L is a line bundle
over X. Since the main ideas are better understood in the special case L = OX

and easily generalized if needed, we shall not use twisted dualities here, except in
Walter’s projective bundle Theorem 10.4.

8.9. Homotopy invariance. It is a result of Karoubi that W(R) ∼= W(R[T ]) for
any ring R containing 1

2 , where R[T ] is the polynomial ring in one variable. It is
possible to extend this result to shifted Witt groups over regular rings : Wi(R) ∼=
Wi(R[T ]) for all i ∈ Z. This is [5, Thm 3.1]. By Mayer-Vietoris, we immediately
get [5, Thm 3.4], which says :

8.10. Theorem. Let X be a regular scheme; then Wi(A1
X) = Wi(X) for all i ∈ Z.

8.11. Commercials. Note that the above statement has a “classical” meaning
for i = 0, 2 : the usual Witt groups of symmetric and skew-symmetric forms are
globally homotopy invariant. This was not known before triangular Witt groups.
Similarly, in the Mayer-Vietoris Theorem 8.5, exactness at Wi(U) ⊕ Wi(V ) for
i = 0, 2, can be explained to someone who does not know TWG : it is a classical
statement with triangular proof. We will see further examples of this below.
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8.12. Generalization of homotopy invariance. Stefan Gille has generalized the
above Theorem in [13] as follows : Let X and Y be separated Gorenstein schemes
of finite Krull dimension and let f : Y −→X be an affine and flat morphism.
(For example, Y could be a vector bundle over X with X regular.) Then f∗ :
W̃ i(X)−→ W̃ i(Y ) is an isomorphism of coherent Witt groups. (In the regular
example, this reads Wi(X) ' Wi(Y ).) Using this, he can compute some Witt
groups. Here is an example inspired by Joanoulou’s work. This illustrates again
how K-theoretic results can be extended to Witt groups via TWG.

8.13. Proposition. (S. Gille) Let R be a regular local ring (a field e.g.) and let

n ≥ 1. Consider Σ2n−1
R := Spec

(
R [X1, . . . , Xn, T1, . . . , Tn]

/
(1−

n∑
j=1

XjTj)
)
, the

hyperbolic sphere. Then the usual Witt group of Σ2n−1
R is

W(Σ2n−1
R ) =

{
W(R) if n 6≡ 1 modulo 4

W(R)⊕W(R) if n ≡ 1 modulo 4.

See [13, Thm 5.1] for a more general statement involving coherent Witt groups.

8.14. More on transfer. In Theorem 8.7 we saw the existence of a homomorphism
Wi(R/J) ∼−→ Wi+r

J (R). This was generalized in [14] to morphisms R−→S such
that S is finitely generated as an R-module (instead of R−→R/J).

8.15. The spectral sequence. Consider a regular schemeX of finite Krull dimen-
sion d. There is a filtration of the derived category Db(VBX) by the codimension
of the support of the homology :

0 = Jd+1 ⊂ Jd ⊂ · · · ⊂ J1 ⊂ J0 = Db(VBX).

Explicitly, for any p ≥ 0, let us denote by X(p) the points of X of codimension p ;
in the affine case, these are the prime ideals of height p. We define Jp to be the
union of the subcategories Db

Z(VBX) where the points of Z belong to X(q) for
q ≥ p. In words, Jp is the subcategory of those complexes whose total homology
has support of codimension greater or equal to p. As mentioned in 6.7, such a
filtration produces a spectral sequence. This is developed in [8] and was generalized
to coherent Witt groups in [12, § 3], where a version “with support” is also given.
I will not repeat this here since it has been repeated several times under several
forms in [5], [6] and [9]. Let us simply say the following. There is a local-to-global
spectral sequence converging to the derived Witt groups of X and whose first page
is very special. The q-th line of the Ep,q

1 -page of this spectral sequence is zero for
all q ∈ Z except for q ≡ 0 modulo 4. For such a q ≡ 0, the q-th line is isomorphic
to a complex of the following form :⊕

x∈X(0)

W(κ(x))→
⊕

x∈X(1)

W(κ(x))→ · · · →
⊕

x∈X(d−1)

W(κ(x))→
⊕

x∈X(d)

W(κ(x))

in the range 0 ≤ p ≤ d and is zero elsewhere. Above, κ(x) is the residue field at
x ∈ X. Such a complex is called a Gersten-Witt complex for the scheme X. The
augmented Gersten-Witt complex is the above complex augmented at the beginning
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by the natural localization homomorphism

W(X)−→
⊕

x∈X(0)

W(κ(x)) .

In [9, Def. 3.1] for instance, we recall an explicit “triangular” definition of this
complex without local choices. The above expression in terms of residue fields is
conceptually clearer, since Witt groups of fields do really classify quadratic forms.
Nevertheless, the above presentation of the Gersten-Witt complex with residue
fields is cumbersome when the differentials must be made explicit or when some-
thing needs to be proven about this complex (like it being exact). In such cases, the
underlying “triangular” complex described in the above quoted references is eas-
ier to handle. An immediate application of this spectral sequence is the following
result.

8.16. Theorem. Let X be regular of Krull dimension at most 4. Then the natural
homomorphism W(X) → Wnr(X) is an epimorphism from the Witt group of X
onto the unramified Witt group of X, which is defined to be the kernel of the first
differential in the Gersten-Witt complex. If X is of dimension at most 3, it is
even an isomorphism. In particular, if X is connected of dimension at most 3 with
function field Q, we have a natural injection W(X) ↪→W(Q).
This is [8, Cor. 10.2 and 10.3].

9. The Gersten Conjecture

9.1. Statement. The Gersten Conjecture for Witt groups is due to William Par-
don [21]. It claims the existence and more importantly the exactness of the Gersten-
Witt complex (see 8.15) for X = Spec(R) where R is regular and local. The result
is also conjectured to be true for R semi-local regular.

9.2. The low dimensional case. Directly from the spectral sequence and from
the vanishing of Wi(R) for i 6≡ 0 modulo 4, we obtained the Conjecture for local
regular rings of dimension at most 4 in [8, Thm 10.4]. This is true in the semi-local
case as well, because the same vanishing holds, see [7].

9.3. The essentially smooth case. The above Conjecture is analogous to the
Gersten Conjecture in K-theory for instance. There are general strategies to attack
such Gersten-type conjectures in the geometric case, that is, when R is essentially
smooth, i.e. is a local ring of a smooth scheme over some ground field k. This was
formalized in [10] into a proof which basically works for any cohomology theory
which is homotopy invariant and excisive. This led to the first proof of the Con-
jecture in [5, Thm 4.3] for R semi-local essentially smooth over an infinite ground
field (of characteristic different from 2, of course).

9.4. Panin’s trick. With the above result, the Gersten-Witt Conjecture essen-
tially reached the level theK-theoretic Gersten Conjecture had reached with Quillen
long ago (plus the low-dimensional cases 9.2, which seem special to Witt groups).
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Ivan Panin discovered more recently a proof of the K-theoretic Gersten Conjecture
for R local merely containing a field. This is a non-trivial consequence of a result
of Popescu, which asserts that any regular k-algebra over some field k is a limit of
smooth k-algebras.

In [9], we show how to transpose this to the Gersten-Witt case. So, the status
of the conjecture is now essentially the following :

9.5. Theorem. Let R be a (semi-) local regular ring containing a field of charac-
teristic different from 2. Then the Gersten-Witt Conjecture holds for R.

Proof. To be honest, in [9], this result is only proven for R local containing a field.
The essentially smooth case [5] is for R semi-local. It remains to check that the
proof of [9] goes through for semi-local rings as well. A useful fact was not clear
at the time of [9] and prevented us from writing the result in the semi-local case :
we did not know whether the shifted groups Wi(R) vanish for R semi-local when
i 6≡ 0 mod 4. This is now settled and will appear in [7]. (Checking that the rest of
the proof of [9] goes through is an interesting diploma thesis subject in 2003.) �

10. Miscellaneous

10.1. Two multiplicative structures on triangular Witt groups. It seems
believable that as soon as the triangulated categories with duality under consider-
ation also carry a reasonable tensor product, then we obtain a graded theory :

Wi ×Wj −→Wi+j .

This is indeed the case but is not as simple at it might seem at first sight. The reader
will find a detailed exposition of this in [16]. This is used to prove the following
result and this multiplicative structure is likely to be extremely useful in the future.
Note that this multiplicative structure extends the usual one on W0(X) = W(X),
obtained by tensor product of vector bundles.

10.2. Theorem. Let X be a regular scheme (see 7.1) of finite Krull dimension d.
Assume that X is connected and that Q is its function field. Then the kernel

J := Ker
(
W(X)−→W(Q)

)
is a nilpotent ideal in the ring W(X). One can even choose the exponent N such
that JN = 0 to be N = [d

4 ] + 1 (at least when X is defined over a field).
See [6] for a precise statement. It is also proven there that the bound [d

4 ] + 1 is the
best possible one by computing the following example.

10.3. Example. Let d ≥ 1. Consider the following scheme over R :

X := P1
R ×R · · · ×R P1

R︸ ︷︷ ︸
d times

.

Then the total Z/4-graded Witt group W(X) ⊕ W1(X) ⊕ W2(X) ⊕ W3(X) is
isomorphic to Z[ε1, . . . , εd]/ε2i with εi in degree 1 ∈ Z/4 for all i = 1, . . . , d. In
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particular, for any k ≤ [d
4 ], the element ε1 · ε2 . . . · ε4k is not zero and belongs to

W4k(X) = W0(X) = W(X), and even more it belongs to the kernel of W(X) →
W(Q). See [6, § 4].

10.4. A projective bundle theorem. Charles Walter obtained a very general
projective bundle Theorem describing the Witt groups of P(E) in terms of the
Witt groups of X, where E is a vector bundle over X. This is done for all shifted
Witt groups and all possible dualities on P(E). Unfortunately, the result is not
always a closed formula and involves a long exact sequence, non-split in general
and originating in the (triangular) localization long exact sequence of 6.6 above.
We give here a “split case” for simplicity.

10.5. Theorem. (C. Walter) Let X be a scheme and consider Pr
X the r-th projec-

tive space over X. Let m be an integer (whose parity is our only concern). Consider
O(m) the m-th multiple of the tautological line bundle over Pr. We can consider
the corresponding Witt groups with twisted dualities with respect to this line bundle,
see 8.8. We have for any i ∈ Z :

Wi(Pr
X ,O(m)) =

{
Wi(X) for m even

0 for m odd

}⊕ {
0 for m+ r even

Wi−r(X) for m+ r odd.

}
The above formula summarizes 4 possibilities according to the 4 “parities” of (m, r)
in Z/2 × Z/2. For instance, for m even and r odd, the formula reads Wi(Pr

X) =
Wi(X)⊕Wi−r(X). This result of [28] generalizes the pioneer result of Arason [1]
in the field case, as well as intermediate results of Gille [11] and [12].

10.6. Representability. Once we have a cohomology theory which satisfies ho-
motopy invariance and Nisnevich excision, everyone is very tempted to believe that
this theory is representable in the A1-homotopy theory of Morel and Voevodsky.
This is indeed the case for Witt groups and will appear in Hornbostel [17], where
the details are to be found.
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