
SPECTRA, SPECTRA, SPECTRA –

TENSOR TRIANGULAR SPECTRA VERSUS

ZARISKI SPECTRA OF ENDOMORPHISM RINGS

PAUL BALMER

Abstract. We construct a natural continuous map from the triangular spec-
trum of a tensor triangulated category to the algebraic Zariski spectrum of the

endomorphism ring of its unit object. We also consider graded and twisted ver-

sions of this construction. We prove that these maps are quite often surjective
but far from injective in general. For instance, the stable homotopy category

of finite spectra has a triangular spectrum much bigger than the Zariski spec-

trum of Z. We also give a first discussion of the spectrum in two new examples,
namely equivariant KK-theory and stable A1-homotopy theory.
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Introduction

Algebraic geometers, stable topologists, finite group representation theorists,
motivic theorists, noncommutative geometers and many other mathematicians have
triangulated categories in common : The derived category of sheaves of modules over
a scheme, the stable homotopy category of topological spectra, the derived category
or the stable category of representations of a finite group or finite group scheme,
the various motivic derived categories, Morel and Voevodsky’s stable A1-homotopy
category, equivariant KK-theory or E-theory of C∗-algebras are famous examples.
In several cases, a tensor structure is also available and is especially well-behaved
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2 PAUL BALMER

on the triangulated subcategory of compact objects. In the above examples, this
leads us to focus on perfect complexes, finite topological spectra, finite dimensional
representations, geometric motives, etc.

This profusion of examples motivates the study of tensor triangulated categories
per se. Emphasizing the geometric aspects of this unified theory leads us to a
subject called tensor triangular geometry, to which the present paper belongs.

To explain these ideas, let us denote by K one of our tensor triangulated cat-
egories (say, of compact objects), by ⊗ : K × K−→K the symmetric tensor
x⊗ y = y ⊗ x and by 11 ∈ K the ⊗-unit : 11⊗ x = x.

Our geometric study was started in [1] with the definition of a topological space

Spc(K)

called the spectrum of K (see also Def. 1.3 below). We call it the triangular spectrum
here, to avoid confusion with other meanings of the word “spectrum”. This funda-
mental space Spc(K) is the canvas on which to draw tensor triangular geometry.
For instance, every object x ∈ K has a support, supp(x) ⊂ Spc(K), which is a closed
subset behaving nicely with respect to exact triangles and tensor product. The pair
(Spc(K), supp) is indeed the best such pair, for it has a universal property : In the
language of [1, Thm. 3.2], (Spc(K), supp) is “the final support datum”.

Although a young subject, tensor triangular geometry has already produced
some interesting results. For instance, in [2, Thm. 2.11], it is proved that if an
object x ∈ K has a disconnected support, i.e. supp(x) = Y1 ∪ Y2 with Y1 and Y2

closed and disjoint, then the object is decomposable accordingly : x ' x1 ⊕ x2

with supp(xi) = Yi. This neat result has applications, like the gluing technique of
Balmer–Favi [6] and its representation theoretic incarnations in Balmer–Benson–
Carlson [5] and in [4]. Another application, this time to algebraic K-theory of
schemes, can be found in [3].

In all applications though, the crucial anchor point is the computation of the
triangular spectrum Spc(K) in the first place. Without this knowledge, abstract
results of tensor triangular geometry are difficult to translate into concrete terms. It
is therefore a major challenge to compute the spectrum Spc(K) in as many examples
as possible, or at least to provide some information about that space when the full
determination of Spc(K) lies beyond reach of the community’s current forces.

Actually, by [1, Thm. 4.10, Thm. 5.2] and [9, Cor. 5.2], we know that the infor-
mation about K contained in the space Spc(K) is exactly equivalent to the so-called
classification of thick triangulated ⊗-ideals of K. Existing such classifications allow
us to compute Spc(K) and, conversely, given the space Spc(K), we obtain a classi-
fication of thick triangulated ⊗-ideals by assigning to suitable subsets Y ⊂ Spc(K)
the thick triangulated ⊗-ideal KY :=

{
a ∈ K

∣∣ supp(a) ⊂ Y
}

of K.
Using pre-existing classifications of thick ⊗-ideals, some triangular spectra have

been computed in [1] and [9] : In algebraic geometry, the spectrum of the de-

rived category of perfect complexes K = Dperf(X) over a quasi-compact and quasi-
separated scheme X reconstructs the scheme X itself; this uses Thomason’s classi-
fication, initiated by Hopkins and Neeman in the affine case. In modular represen-
tation theory, the spectrum of the stable category K = kG – stab is the projective
support variety VG(k) = Proj(H•(G, k)), by Benson-Carlson-Rickard’s classifica-
tion, generalized to finite group schemes by Friedlander-Pevtsova. See [1] for details
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and references about these statements. Recently, Krishna [17] identified spectra of
perfect complexes over Deligne–Mumford stacks as coarse moduli spaces.

Yet, the precursor of all these classifications is to be found in topology, in the
celebrated work of Hopkins and Smith [15]. Since the reformulation of this original
result in terms of a triangular spectrum has not been written down so far, we
provide it in Section 9, en passant; see (0.1) further down in this introduction.

Such classifications are usually rather non-trivial. In noncommutative topology
little is known beyond the very first cases, recently treated by Dell’Ambrogio in [11]
(see Ex. 8.7 below). In A1-homotopy theory, the classification is not known and the
question is essentially wide open. It would be very interesting to use the theory
of triangular spectra in order to compute the spectrum directly, by independent
techniques, and then deduce the classification by [1, Thm. 4.10]. This is actually
sometimes possible. It works for instance in commutative algebra, as we shall see in
Remark 8.4. But more generally, in the new areas were the classification might be
too hard for now, any information about the relevant triangular spectra provides an
indication of the complexity of the triangulated categories involved. Such results
are among the objectives of the present paper, as we shall see below.

Let us stress the point that, to this day, all known homeomorphisms between
Spc(K) and a more explicit topological space X come from the universal property
of the pair (Spc(K), supp) as a final support datum. Such maps X → Spc(K) are
always going from a candidate-spectrum X towards Spc(K).

The main purpose of the present article is to construct continuous maps out

of Spc(K), into topological spaces X of “spectral” nature : Spc(K) //___ X .

Indeed, by many aspects, the triangular spectrum Spc(K) resembles the Zariski
spectrum of a commutative ring; first naively, since points of Spc(K) are sophisti-
cated prime ideals, see Def. 1.3. But more rigourously, the space Spc(K) is always
spectral in the sense of Hochster [14], i.e. it has a basis of quasi-compact opens
and any irreducible closed has a unique generic point. Hochster proved that this
characterizes spectra of commutative rings among topological spaces. So, we might
hope for a nice little commutative ring R such that Spc(K) = Spec(R). Since the
endomorphism ring of the unit, EndK(11), provides a natural commutative ring for
each tensor triangulated category K, it is legitimate to ask whether the triangular
spectrum Spc(K) can be related to the Zariski spectrum Spec(EndK(11)). Alterna-
tively, one can consider the homogeneous spectrum of the graded endomorphism
ring End•K(11) = HomK(11,Σ•(11)). Our main construction establishes such links :

Theorem (Thm. 5.3 and Cor. 5.6). There exist two continuous maps

ρK : Spc(K)−→ Spec
(
EndK(11)

)
and ρ•K : Spc(K)−→ Spech(End•K(11))

which are natural in the tensor triangulated category K.

A direct consequence is that one can produce open covers of the triangular
spectrum Spc(K) by taking pre-images of open covers of the above Zariski spectra,
even before knowing Spc(K). This will be investigated in subsequent work.

It is interesting to inspect the various incarnations of the maps ρK and ρ•K in the
areas of application of tensor triangular geometry mentioned above. These maps
are always non-trivial but seem especially informative in algebraic examples. In
fact, the maps ρK and ρ•K are often surjective (yet not always; see Ex. 8.3) :
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Theorem (Thm. 7.13). Assume that K is connective, i.e. HomK(Σi(11), 11) = 0 for
all i < 0. Then the map ρK : Spc(K)−→ Spec(EndK(11)) is surjective.

There is also a rather mild sufficient condition for surjectivity in the graded case :

Theorem (Thm. 7.3 and Cor. 7.4). If the graded ring End•K(11) is coherent, for

instance if it is noetherian, then both maps ρ•K : Spc(K)−→ Spech(End•K(11)) and
ρK : Spc(K)−→ Spec(EndK(11)) are surjective.

On the other hand, these maps ρK and ρ•K are not injective in general, already

in algebraic geometry, that is, for K = Dperf(X) over a scheme X. For instance,
in the case of projective n-space X = Pnk , we have Spc(K) ∼= Pnk but EndK(11) =
End•K(11) = k. However, such counter-examples are rather weak for the following
two reasons. First, when X = Spec(A) is affine, the map ρ•K = ρK is actually

a homeomorphism (Prop. 8.1), inverse to the one Spec(A)
∼→ Spc(K) given in [1,

Cor. 5.6]. So, in algebraic geometry, ρ•K is at least “locally injective”. Secondly, in
examples like the above X = Pnk , one can in fact obtain injectivity of ρ•K if we twist
the graded endomorphism ring by a line bundle ; see Remark 8.2.

In topology, for K = SHfin the (Spanier-Whitehead) stable homotopy category

of finite spectra, the triangular spectrum Spc(SHfin) and the surjective continuous

map ρSHfin : Spc(SHfin)−→ Spec(Z) look as follows (see Corollary 9.5) :

(0.1)

P2,∞ P3,∞ · · · Pp,∞ · · ·

Spc(SHfin) =

ρSHfin

��

...
...

...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,1

VVVVVVVVVVVV P3,1

LLLL · · · Pp,1

mmmmmmm · · ·

SHfin
tor

Spec(Z) = 2Z
VVVVVVVVVVVVVV 3Z

MMMMMM · · · pZ
mmmmmmmm · · ·

(0)

Here, p runs through prime numbers and n through positive integers. The notation
in this result (the announced reformulation of Hopkins-Smith’s classification) is
explained in Section 9. The map ρSHfin is the obvious vertical projection. Note
that its non-injectivity is more serious than before. Indeed, here, injectivity even
fails locally, that is, for SHfin

(p) the localization of SHfin at a prime p, despite SHfin
(p)

being a local tensor triangulated category (in the sense of Section 4).

This simply indicates that endomorphism rings of the unit cannot control the
whole triangulated category K and that Spc(K) is a richer invariant.
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At this stage, I do not know a good general criterion which could guarantee the
(local) injectivity of the map ρK : Spc(K)→ Spec(EndK(11)) or its twisted graded
version ρ•K. Such a criterion should probably work only for “algebraic enough”
triangulated categories K and seems to be an interesting research challenge.

Finally, here are the announced applications to A1-homotopy theory and non-
commutative topology, where the triangular spectrum is not known yet but some
partial information can be obtained by the techniques of this paper :

Theorem (Cor. 10.1). Let KA1 := (SHA1
F )c be the subcategory of compact objects in

the stable A1-homotopy category SHA1
F over a perfect field F of characteristic differ-

ent from 2. Let GW(F ) be the Grothendieck-Witt ring of quadratic forms over F .

Then there is a surjective continuous map ρKA1 : Spc(KA1)−→ Spec(GW(F )).

This uses among other things our first criterion for surjectivity (connectivity).
The Zariski spectrum Spec(GW(F )) is classical and can be found in Remark 10.2.

Theorem (Cor. 8.8). Let G be a compact Lie group and KKG be the category
of separable G-C∗-algebras with morphisms given by Kasparov’s equivariant KK-
theory (see Meyer [23]). Let R(G) := KG

0 (C) be the complex representation ring
of G. Then there is a continuous surjection ρKKG : Spc(KKG)−→ Spec(R(G)).

This uses among other things our second criterion for surjectivity (noetherianity).
The Zariski spectrum Spec(R(G)) is classical and can be found in Segal [31, § 3].

The structure of the paper is the following. After quickly recalling from [1] a
few facts about tensor triangulated categories and their spectrum in the one-page
Section 1, we consider the central ring RK = EndK(11) in Section 2. As in any
symmetric monoidal category, the ring RK acts on any object of K. We show in
Theorem 2.15 that the smallest thick triangulated ⊗-ideal 〈cone(f)〉 containing the
cone of an endomorphism f : 11 → 11 coincides with the subcategory of objects
x ∈ K on which f is nilpotent. In Section 3, we use these techniques to construct
localizations S−1K of any tensor triangulated category K, with respect to any mul-
tiplicative subset S ⊂ RK. We also provide graded versions of these constructions.

Section 4 has a broader importance for tensor triangular geometry, for we intro-
duce the notion of local tensor triangulated category. For instance, a rigid (Def. 1.5)
tensor triangulated category K is local if and only if

(0.2) x⊗ y = 0 implies x = 0 or y = 0 .

Following commutative algebra, one might naively call tensor triangulated cate-
gories satisfying (0.2) “integral” or “domains”. The correct terminology, namely
“local”, is justified by the fact that Spc(K) is a local topological space (Prop. 4.2)

and comforted by the fact that a commutative ring A is local if and only if Dperf(A)
is local in the above sense. A key result is Theorem 4.5, which says :

Theorem. If K is a local tensor triangulated category, then RK is a local ring and
R•K = End•K(11) is a local graded ring.

It is then easy to construct the maps ρK and ρ•K explicitly in Section 5. Some-
what independent of the rest, Section 6 recalls from [1] the sheaf of rings OK on
the spectrum Spc(K). This yields a locally ringed space Spec(K) :=

(
Spc(K),OK

)
and our maps ρK and ρ•K become morphisms of locally ringed spaces. Incidentally,

the example of K = SHfin also shows that the locally ringed space Spec(K) is not
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a scheme in general. We prove our surjectivity results in Section 7. The last three
sections are dedicated to examples, from algebraic geometry, modular representa-
tion theory and KK-theory in Section 8, from topological stable homotopy theory
in Section 9 and finally from stable A1-homotopy theory in Section 10.

Acknowledgments : I warmly thank Aravind Asok, Mark Blunk, Theo Bühler,
Ivo Dell’Ambrogio, Fabien Morel, Amnon Neeman, Manuel Ojanguren, Tobias Pe-
ter, Greg Stevenson and Charles Walter for precious discussions and comments. I
also thank the referee for suggesting some improvements.

1. Basics

Convention 1.1. Unless stated otherwise, all categories are assumed essentially
small and all subcategories are assumed full and closed under isomorphism.

Definition 1.2. A tensor triangulated category (K,⊗, 11) is the data of a triangu-
lated category K and of a “compatible” symmetric monoidal structure

⊗ : K×K−→K

with unit 11 ∈ K (for symmetric monoidal ; see Mac Lane [21, §XI.1]). We denote by

σa,b : a⊗ b ∼→ b⊗ a the symmetry isomorphism (switch). The compatibility means
that ⊗ should be exact in each variable. See further references in [1, Def. 1.1].

Definition 1.3. In [1], we define the spectrum, Spc(K), of a tensor triangulated
category K as the set of proper thick triangulated ⊗-ideals P ( K which are prime,
i.e. such that a ⊗ b ∈ P ⇒ a or b ∈ P. We define for all a ∈ K the open subsets
U(a) :=

{
P ∈ Spc(K)

∣∣ a ∈ P
}

, which form a basis of the topology on Spc(K). The
support of an object a ∈ K is the closed complement of U(a) :

supp(a) =
{
P ∈ Spc(K)

∣∣ a /∈ P
}
⊂ Spc(K) .

Remark 1.4. Let J ⊂ K be a thick triangulated ⊗-ideal (that is, J ⊂ K is a
non-empty full subcategory, stable in K under taking cones, direct summands and
tensor product with any object of K). The Verdier quotient K/J ([32, § II.2])
becomes a ⊗-triangulated category, with q : K�K/J being ⊗-triangulated. The
spectrum of the quotient Spc(K/J) is naturally homeomorphic to the subspace{
P ∈ Spc(K)

∣∣P ⊃ J
}

of Spc(K), via Q 7→ q−1(Q) ; see [1, Prop. 3.11].

Definition 1.5. We say that the tensor triangulated category is rigid if there exists
an exact functor D : Kop → K and natural isomorphisms

HomK(a⊗ b, c) ' HomK(a,D(b)⊗ c) .

This says that hom(b, c) := D(b)⊗ c is an internal hom functor. In [2], [6] we wrote
“strongly closed” instead of “rigid” but the latter terminology seems more common.

Notation 1.6. For a collection E ⊂ K of objects, we denote by 〈E〉 the smallest
thick triangulated ⊗-ideal containing E .

Proposition 1.7. Let E ⊂ K be a class of objects in our ⊗-triangulated category K.

(a) For a ∈ 〈E〉 and for b ∈ K, we have a⊗ b ∈ 〈E ⊗ b〉.
(b) If 〈E〉 = K, then for every n ≥ 1 we have 〈

{
x⊗n

∣∣x ∈ E }〉 = K as well.
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Proof. (a) : The subcategory
{
x ∈ K

∣∣x ⊗ b ∈ 〈E ⊗ b〉
}

is a thick triangulated
⊗-ideal containing E , hence containing 〈E〉, hence containing a.

(b) : There exists x1, . . . , xm ∈ E such that 11 ∈ 〈x1, . . . , xm〉. So, we can assume
E = {x1, . . . , xm} finite. From (a), we get xi ∈ 〈E ⊗ xi〉 ⊂ 〈E(2)〉, where E(r) :={
y1 ⊗ · · · ⊗ yr

∣∣ y1, . . . , yr ∈ E
}

for any r ≥ 2. Hence 11 ∈ 〈x1, . . . , xm〉 ⊂ 〈E(2)〉.
Repeating this, we get 11 ∈ 〈E(r)〉 for all r ≥ 2. Now since E is finite, for any
given n ≥ 1, there exists r ≥ 1 big enough such that E(r) ⊂ 〈

{
x⊗n

∣∣x ∈ E }〉.
Hence 11 ∈ 〈

{
x⊗n

∣∣x ∈ E }〉 and therefore K = 〈
{
x⊗n

∣∣x ∈ E }〉. �

2. Morphisms and actions

Definition 2.1. For a tensor triangulated category (K,⊗, 11), we define its central
ring RK to be the endomorphism ring of its unit

RK := EndK(11) .

It is commutative since composition coincides with tensor product :

Proposition 2.2. For all a, b ∈ K, the group HomK(a, b) is a left RK-module via
(f, g) 7→ f ⊗ g, for f ∈ RK and g ∈ HomK(a, b), using the identifications 11⊗ a ∼= a
and 11 ⊗ b ∼= b. This left action coincides with the right action (g, f) 7→ g ⊗ f
defined analogously. We denote this action by f ·g. With this structure, composition
HomK(b, c)×HomK(a, b)→ HomK(a, c), (g, h) 7→ g ◦ h, becomes RK-bilinear.

Proof. Let us check that f ⊗ g = g ⊗ f . Consider the commutative diagram :

11⊗ a
f⊗g //

σ11,a∼=

��

11⊗ b ∼=
((QQQQQQQ

σ11,b∼=

��

a

∼= 66nnnnnnn

∼= ((PPPPPPP b .

a⊗ 11
g⊗f // b⊗ 11

∼=

66mmmmmmm

The left and right triangles commute by axiom of symmetric monoidal categories [21,
XI.1.(4), p. 252]. The upper composition from a to b is what we called f⊗g and the
lower one is g⊗ f . The rest of the proof is left to the reader (or see [11, 2.1.1]). �

Remark 2.3. Proposition 2.2 justifies the term “central ring” for the ring RK.

Definition 2.4. An object u ∈ K is invertible if u⊗ v ' 11 for some v ∈ K. When
K is rigid (Def. 1.5), v is necessarily isomorphic to D(u).

Example 2.5. When u is invertible, so is Σi(u) for every i ∈ Z. In particular,
Σi(11) is invertible for every i ∈ Z, with inverse Σ−i(11).

Notation 2.6. For a morphism f : 11→ u and for an object a ∈ K, we denote by

f�a : a−→u⊗ a
the morphism f ⊗ ida (composed with a ∼= 11 ⊗ a). This applies in particular to
u = 11, in which case, f�a is nothing but f · ida in the notation of Proposition 2.2.

Remark 2.7. Let u ∈ K be invertible. Then f 7→ f ⊗ idu induces an isomorphism
HomK(a, b)

∼→ HomK(a ⊗ u, b ⊗ u) for all a, b ∈ K. In particular, there exists

a central unit εu ∈ R×K such that the switch σu,u : u ⊗ u
∼→ u ⊗ u is equal to

(εu)�u⊗u = εu · idu⊗u. Note that (σu,u)2 = idu⊗u implies (εu)2 = 1.
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Definition 2.8. We say that an object x ∈ K has central switch if there exists a
unit ε = ε(x) ∈ R×K such that σx,x = ε�x⊗x : x ⊗ x → x ⊗ x. Remark 2.7 shows
that invertible objects have central switch.

Remark 2.9. Assume that x and y have central switch. Then x ⊗ y also does.
Indeed, for x1, x2, y1, y2 ∈ K the switch σx1⊗y1,x2⊗y2 decomposes as follows :

x1 ⊗ y1 ⊗ x2 ⊗ y2

σx1⊗y1,x2⊗y2 //

1⊗σy1,x2
⊗1

��

x2 ⊗ y2 ⊗ x1 ⊗ y1 .

x1 ⊗ x2 ⊗ y1 ⊗ y2

σx1,x2
⊗σy1,y2 // x2 ⊗ x1 ⊗ y2 ⊗ y1

1⊗σx1,y2
⊗1

OO

For x1 = x2 = x and y1 = y2 = y, the bottom morphism is central (= ε(x) · ε(y))
and the two vertical morphisms are mutual inverses. So x ⊗ y has central switch :
ε(x⊗ y) = ε(x) · ε(y) in RK. In particular, x⊗n has central switch for all n ≥ 1.

Lemma 2.10. Let f : a → x and g : b → x be two morphisms and assume that x
has central switch (Def. 2.8). Then there exists an isomorphism τ : b ⊗ a ∼→ a ⊗ b
such that g ⊗ f = (f ⊗ g) ◦ τ . Similarly, for f ′ : x→ a′ and g′ : x→ b′ there exists

an isomorphism τ ′ : a′ ⊗ b′ ∼→ b′ ⊗ a′ such that g′ ⊗ f ′ = τ ′ ◦ (f ′ ⊗ g′).

Proof. This is elementary. Let ε ∈ R×K such that σx,x = ε�x⊗x. Since the diagram

b⊗ a
g⊗f //

σb,a ∼=
��

x⊗ x
σx,x=ε�x⊗x∼=

��
a⊗ b

f⊗g // x⊗ x

commutes, and since ε ∈ RK is “central” (Prop. 2.2), we can take τ = ε · σb,a. �

Lemma 2.11. Let g : x → y be a morphism. Let a
k // b

l // c m // Σa be a
distinguished triangle and suppose that the following diagram commutes

x⊗ a idx⊗k //

0

��

x⊗ b
idx⊗l //

g⊗idb

��

x⊗ c idx⊗m //

0

��

Σ(x⊗ a)

0

��
y ⊗ a

idy ⊗k
// y ⊗ b

idy ⊗l
// y ⊗ c

idy ⊗m
// Σ(y ⊗ a) .

Then the morphism g ⊗ g ⊗ idb : x⊗ x⊗ b−→ y ⊗ y ⊗ b is equal to zero.

Proof. From the commutative diagram, we get

(a) (g ⊗ idb) ◦ (idx⊗k) = 0,
(b) g ⊗ l = (idy ⊗l) ◦ (g ⊗ idb) = 0.

By (a) and the exact triangle of the first row, there exists h : x⊗c→ y⊗b such that
g⊗ idb = h◦ (idx⊗l). Hence g⊗g⊗ idb = g⊗ (h◦ (idx⊗l)) = (idy ⊗h)◦ (g⊗ idx⊗l)
and this is zero because g ⊗ idx⊗l = 0. To check this last claim, note that (b)
implies 0 = idx⊗g ⊗ l : x ⊗ x ⊗ b−→x ⊗ y ⊗ c and switch the first two factors,
that is, precompose by σx,x ⊗ idb and postcompose by σx,y ⊗ idc. �

Proposition 2.12. Let f : x → y be a morphism. Then the objects a ∈ K for
which there exists n ≥ 1 with f⊗n ⊗ ida = 0 (as a morphism x⊗n ⊗ a−→ y⊗n ⊗ a)
form a thick triangulated ⊗-ideal of K.
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Proof. Thick and ⊗-ideal is easy; triangulated follows from Lemma 2.11. �

The following is well-known for x = y = 11.

Proposition 2.13. Let f : x → y be a morphism and assume that x and y have
central switch (Def. 2.8) ; e.g. x and y invertible. Then (f ⊗ f)⊗ idcone(f) = 0.

Proof. Consider a distinguished triangle x
f−→ y

f1−→ cone(f)
f2−→Σ(x) and the com-

mutative diagram

x⊗ x
idx⊗f //

f⊗idx

��

x⊗ y idx⊗f1 //

f⊗idy

��

x⊗ cone(f)
idx⊗f2 //

f⊗idcone(f)

��

Σ(x⊗ x)

Σ(f⊗idx)

��
y ⊗ x

idy ⊗f
// y ⊗ y

idy ⊗f1
// y ⊗ cone(f)

idy ⊗f2
// Σ(y ⊗ x) .

We claim that the diagonal morphisms of the second and third squares vanish :

(a) (idy ⊗f1) ◦ (f ⊗ idy) = 0 and
(b) Σ(f ⊗ idx) ◦ (idx⊗f2) = 0.

Since y has central switch, we can apply Lemma 2.10 to our f and to g := idy to

obtain an isomorphism τ : y⊗x ∼→ x⊗y such that (f ⊗ idy)◦ τ = idy ⊗f . Then (a)
is easily checked by composing on the right by the isomorphism τ and using that
f1 ◦ f = 0. Similarly, for (b), using the second statement of Lemma 2.10.

By (a) and (b), we can now replace the above morphism of distinguished triangles
(f ⊗ idx , f ⊗ idy , f ⊗ idcone(f) ) by the morphism (0, 0, f ⊗ idcone(f)). The result
then follows from Lemma 2.11 (modulo obvious rotations). �

Proposition 2.14. Let f : x→ y be a morphism in K and suppose that 〈x, y〉 = K ;
e.g. x or y invertible. If a ∈ K is such that f ⊗ ida = 0 then a ∈ 〈cone(f)〉.

Proof. Tensor the distinguished triangle x
f−→ y → cone(f)→ Σ(x) with a and use

the assumption f ⊗ ida = 0 to deduce that (y ⊗ a)⊕Σ(x⊗ a) ' cone(f)⊗ a. This
shows that x⊗a and y⊗a belong to 〈cone(f)〉. Therefore 〈x⊗a, y⊗a〉 ⊂ 〈cone(f)〉.
Finally, from 11 ∈ 〈x, y〉 we deduce a ∈ 〈x⊗ a, y ⊗ a〉 by Proposition 1.7 (a). �

Theorem 2.15. Assume that x, y ∈ K have central switch (Def. 2.8) and that
〈x, y〉 = K ; e.g. x and y invertible. Let f : x → y be a morphism in K. Then
the thick triangulated ⊗-ideal generated by its cone, 〈cone(f)〉, coincides with the
subcategory of those objects a ∈ K for which f⊗n ⊗ ida = 0 for some n ≥ 1.

Proof. Let J :=
{
a ∈ K

∣∣∃n ≥ 1 s.t. f⊗n ⊗ ida = 0
}

the subcategory in question.
By Proposition 2.12, J is a thick triangulated ⊗-ideal and by Proposition 2.13 we
have cone(f) ∈ J, hence 〈cone(f)〉 ⊂ J. Let us now check the other inclusion.

Let a ∈ K be such that f⊗n⊗ida = 0. Then a ∈ 〈cone(f⊗n)〉 by Proposition 2.14
applied to f⊗n : x⊗n → y⊗n. Note that 〈x⊗n, y⊗n〉 = K by Proposition 1.7 (b).

So, it remains to prove that 〈cone(f⊗n)〉 ⊂ 〈cone(f)〉 for all n ≥ 1. We do so by
induction on n. Suppose that n ≥ 1 and that 〈cone(f⊗n)〉 ⊂ 〈cone(f)〉. Then the
octahedron axiom applied to the relation f⊗(n+1) = (f ⊗ idy⊗n)◦ (idx⊗f⊗n) shows

that cone(f⊗(n+1)) ∈ 〈cone(f), cone(f⊗n)〉 ⊂ 〈cone(f)〉, which gives the result. �

Proposition 2.16. Let x, y ∈ K be as in Theorem 2.15, e.g. x and y invertible.
Let f : x→ y and n ≥ 1. Then 〈cone(f)⊗n〉 = 〈cone(f⊗n)〉 = 〈cone(f)〉.
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Proof. Note that x⊗n and y⊗n still satisfy the hypotheses of Theorem 2.15 by
Remark 2.9 and Proposition 1.7 (b). It is then direct from Theorem 2.15 that
〈cone(f)〉 = 〈cone(f⊗n)〉. Obviously, cone(f)⊗n ∈ 〈cone(f)〉 hence it suffices to
prove that cone(f) ∈ 〈cone(f)⊗n〉. By induction (and Prop. 1.7 (a)), it suffices to
treat the case n = 2. Consider the composition

x⊗ x⊗ cone(f)
f⊗1⊗1 // y ⊗ x⊗ cone(f)

1⊗f⊗1 // y ⊗ y ⊗ cone(f) .

Since the cone of the first map, cone(f)⊗ x⊗ cone(f), and the cone of the second,
y ⊗ cone(f) ⊗ cone(f), both belong to 〈cone(f)⊗2〉, the octahedron axiom tells us
that the cone of the composition also belongs to 〈cone(f)⊗2〉. But that composition
is zero by Proposition 2.13 hence its cone is Σ(x⊗2 ⊗ cone(f)) ⊕ (y⊗2 ⊗ cone(f)).
By definition, 〈cone(f)⊗2〉 is thick, so we have proved :

〈x⊗2 ⊗ cone(f) , y⊗2 ⊗ cone(f)〉 ⊂ 〈cone(f)⊗2〉 .

Proposition 1.7 (b) and (a) gives us 11 ∈ 〈x⊗2, y⊗2〉 and cone(f) = 11 ⊗ cone(f) ∈
〈x⊗2 ⊗ cone(f) , y⊗2 ⊗ cone(f)〉 ⊂ 〈cone(f)⊗2〉, as wanted. �

3. Graded homomorphisms and central localization

Notation 3.1. Let us fix u ∈ K an invertible object. For any pair of objects
a, b ∈ K, and any i ∈ Z, we denote by

Homi
K(a, b) := HomK( a , u⊗i ⊗ b ) .

When we need to stress the dependency on u, we can write Homi
K,u(a, b). The above

notation is commonly used with u = Σ(11), for which Homi
K(a, b) ∼= HomK(a,Σi(b)).

We denote by Hom•K(a, b) the Z-graded abelian group ⊕i∈ZHomi
K(a, b). We have

an obvious composition :

Homj
K(b, c)×Homi

K(a, b)
�−→ Homi+j

K (a, c)(
b

g−→u⊗j ⊗ c , a f−→u⊗i ⊗ b
)

7−→ a
g�f //

f ''OOOOO u⊗(i+j) ⊗ c

u⊗i ⊗ b id⊗i
u ⊗g
44jjjj

which coincides with the usual composition when i = 0.
We shall mostly use the case u = Σ(11) but the above flexibility can be useful in

general, as illustrated in algebraic geometry in Remark 8.2.

Definition 3.2. We denote by R•K (or R•K,u) the graded group Hom•K(11, 11), which
is a unital associative Z-graded ring with respect to �. We call it the graded central
ring of K (with respect to u ∈ K). Note that R0

K is just the central ring RK =
EndK(11) of Section 2, independently of u.

Generalizing Proposition 2.2, we have the following compatibility between �
and ⊗. Recall the central unit εu ∈ RK = R0

K such that the switch σu,u : u⊗ u ∼→
u⊗u is given by multiplication by εu. (See Rem. 2.7.) Of course, we have (εu)2 = 1
and the reader can simply assume that εu = ±1, as it is often the case.

Proposition 3.3. Let u ∈ K be an invertible object. With the above notation :
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(a) For a, b ∈ K, the graded abelian group Hom•K(a, b) carries both a structure
of left and of right graded module over the graded central ring R•K, defined

via the tensor product ⊗. Explicitly, for f ∈ Ri
K and g ∈ Homj

K(a, b), we
set

f · g :=
(
a

f⊗g // u⊗i ⊗ u⊗j ⊗ b ∼= u⊗(i+j) ⊗ b
)

and

g · f :=
(
a

g⊗f // u⊗j ⊗ b⊗ u⊗i id⊗σ
∼=

// u⊗j ⊗ u⊗i ⊗ b ∼= u⊗(i+j) ⊗ b
)
.

(b) When a = b = 11, both actions coincide with composition f · g = f � g.
(c) Composition � : Hom•K(b, c) × Hom•K(a, b)−→Hom•K(a, c) is bilinear with

respect to both the left action and the right action, in an εu-graded way, that
is, for f ∈ Ri

K, g ∈ Homj
K(a, b) and h ∈ Homk

K(b, c), we have

(f · h) � g = f · (h � g) = (εu)i·k h � (f · g)
and h � (g · f) = (h � g) · f = (εu)i·j (h · f) � g .

(d) The left and right actions coincide in an εu-graded way, that is, for f ∈ Ri
K

and g ∈ Homj
K(a, b), we have

f · g = (εu)i·j g · f .
(e) In particular, the Z-graded central ring R•K is εu-commutative.

Sketch of Proof. Consider the external product

Homi
K(a, b)×Homj

K(c, d)
�−→Homi+j

K (a⊗ c, b⊗ d)

defined for f ∈ Homi
K(a, b) and g ∈ Homj

K(c, d) by the formula

a⊗ c
f⊗g

//

f�g

,,
u⊗i ⊗ b⊗ u⊗j ⊗ d

1⊗σ⊗1
// u⊗i ⊗ u⊗j ⊗ b⊗ d u⊗i+j ⊗ b⊗ d .

This product is associative, natural and εu-commutative, in the obvious sense.
Statements (a)-(e) can be deduced from these properties. (Compare Proposi-
tion 2.2.) Further verifications are left to the reader, who can find some details
in [11, § 2.1.2]. �

Remark 3.4. We are going to need some elementary graded commutative algebra
over ε-commutative Z-graded rings. Let R• =

⊕
i∈ZR

i be a unitary and associative

Z-graded ring. We denote by Rhom := ∪i∈ZRi the subset of homogeneous elements.
We say that R• is ε-commutative if there exists ε ∈ R0 such that ε2 = 1 and

(3.1) f · g = εij · g · f
for all homogeneous f ∈ Ri and g ∈ Rj . Hence the subset Reven := ∪i∈ZR2i is
central in R•, and in particular so is the unit ε.

Let S ⊂ Rhom be a central multiplicative subset (1 ∈ S and S · S ⊂ S, typically
S ⊂ Reven). Then the localization S−1R• is graded as usual by setting (S−1R•)i :={
f
s

∣∣ f ∈ Ri+j , s ∈ S ∩ Rj }. If we need to invert a more general multiplicative

subset T ⊂ Rhom, hypothesis (3.1) allows us to do it by inverting the central subset
S :=

{
t2
∣∣ t ∈ T } instead.

We define the homogeneous spectrum, Spech(R•), as the set of proper homoge-
neous ideals p• of R• which are prime (a · b ∈ p• ⇒ a ∈ p• or b ∈ p• ; this can
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be checked on homogeneous elements only). The Zariski topology has as closed

subsets the V (I•) :=
{
p• ∈ Spech(R•)

∣∣ I• ⊂ p•
}

for homogeneous ideals I• ⊂ R•.

The principal open subsets D(s) :=
{
p• ∈ Spech(R•)

∣∣ s /∈ p•
}

define a basis of the

topology, for s running through Rhom, or just through Reven since D(s) = D(s2).

We define a structure sheaf O• of ε-commutative Z-graded rings on Spech(R•) by
setting O•(D(s)) = R•[ 1

s ] := S−1R• where S =
{
s2i
∣∣ i ∈ N

}
⊂ Reven.

When ε = 1, the reader can find in [20] all results we use below. We also use
this reference even for ε 6= 1. Unfortunately, the literature does not seem to have
an ε-commutative equivalent of [20] and we will follow here the usual practice of
leaving to the reader to extend the proofs in the ε-commutative case.

Here, we need to associate to a homogeneous prime p• ⊂ R• a localization
R• → S−1R• such that S−1R• has a unique maximal homogeneous ideal (i.e.
S−1R• is a local graded ring) in such a way that this maximal ideal maps to our p•

under the natural map (defined as usual)

Spech(S−1R•) ↪→ Spech(R•) .

This can be realized by localization with respect to the central multiplicative subset

(3.2) Sp• := {s ∈ Reven such that s /∈ p•} .

Indeed, a homogeneous prime ideal q• ⊂ R• disjoint from Sp• is contained in p•

(otherwise, there is a homogeneous t ∈ q• with t /∈ p•, but then t2 ∈ Sp• ∩ q• = ∅).

Construction 3.5. Let us return to our tensor triangulated category K. Consider
now S ⊂ R•K a multiplicative subset of homogeneous elements (1 ∈ S and S ·S ⊂ S).
When εu 6= 1, we further require S ⊂ Reven

K . So, S is central in R•K and acts centrally

on any graded module Hom•K(a, b). For instance, for each p• ∈ Spech(R•K), we can
take S = Sp• as defined in (3.2) above.

We can construct as above the Z-graded εu-commutative ring S−1 R•K. Then,
for any a, b ∈ K, we can construct the S−1 R•K-module S−1Hom•K(a, b). Let us

denote by
(
S−1Hom•K(a, b)

)0
its degree zero part. Composition of morphisms (�)

being R•K-bilinear, it induces a well-defined homomorphism(
S−1Hom•K(b, c)

)0 × (S−1Hom•K(a, b)
)0−→ (S−1Hom•K(a, c)

)0
.

This defines a new category, that we denote S−1K, with the same objects as K and

HomS−1K(a, b) =
(
S−1Hom•K(a, b)

)0
.

The natural homomorphism HomK(a, b)−→
(
S−1Hom•K(a, b)

)0
defines a functor

qS : K−→S−1K .

We now show that S−1K is a Verdier localization of K, in the obvious way. (Com-
pare Hovey et al. [16, Thm. 3.3.7] under additional hypotheses about K.)

Theorem 3.6. Let us keep notations as above. Consider J = 〈cone(s)|s ∈ S〉 the
thick triangulated ⊗-ideal generated by the cones of elements of S. Consider the
Verdier localization q : K�K/J. Then there is an equivalence α : S−1K

∼−→K/J
such that α ◦ qS = q. In particular, S−1K can be equipped with the structure of
a tensor triangulated category such that qS : K−→S−1K is a morphism of tensor
triangulated categories.
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We need two preliminary results. The first one is a generalization of Theo-
rem 2.15. Recall from Notation 2.6 the shorthand f�a = f ⊗ ida for f ∈ Reven

K and
an object a ∈ K.

Proposition 3.7. With notation as in 3.5 and 3.6, we have J =
{
c ∈ K

∣∣∃ s ∈
S such that s�c = 0

}
.

Proof. Let J′ :=
{
c ∈ K

∣∣ ∃ s ∈ S such that s�c = 0
}

. Proposition 2.14 implies
J′ ⊂ J. To check the converse, first note that since S is multiplicative and since
multiplication and composition coincide on R•K, we have J′ =

{
c ∈ K

∣∣ ∃ s ∈
S and n ≥ 1 such that (s⊗n) ⊗ idc = 0

}
. It is then easy to deduce from Proposi-

tion 2.12 that J′ is thick, triangulated and ⊗-ideal. By Proposition 2.13, we have
cone(s) ∈ J′ for all s ∈ S. Therefore J = 〈cone(s)|s ∈ S〉 ⊂ J′. �

Lemma 3.8. With notation as in 3.5 and 3.6, a morphism k : b → x in K has
its cone in J if and only if there exists s ∈ S of some degree d ∈ Z and l,m ∈
Homd

K(x, b) such that l ◦ k = s�b in Homd
K(b, b) and k �m = s�x in Homd

K(x, x).

Proof. Consider a distinguished triangle over k : b → x and, for any s ∈ S of
degree d, the commutative (plain) diagram :

b
k //

s�b

��

x
k1 //

s�x

��

l

wwo o o o o o o

m
wwo o o o o o o cone(k)

k2 //

s
�cone(k)

��

Σ(b)

Σ(s�b)

��
u⊗d ⊗ b

1⊗k
// u⊗d ⊗ x

1⊗k1
// u⊗d ⊗ cone(k)

1⊗k2
// Σ(u⊗d ⊗ b) .

If cone(k) ∈ J, by Proposition 3.7, we can choose s ∈ S such that the third vertical
morphism s�cone(k) vanishes. Then (1 ⊗ k1) ◦ s�x = 0 and s�b ◦ Σ−1(k2) = 0 and
the existence of l and m with l ◦ k = s�b and (1 ⊗ k) ◦m = s�x are standard facts
in triangulated categories. Conversely, if such morphisms l and m exist for some
s ∈ S, then s�cone(k) ◦ k1 = 0 and (1 ⊗ k2) ◦ s�cone(k) = 0. By Lemma 2.11, this

implies (s2)�cone(k) = s⊗s⊗ idcone(k) = 0. Since s2 ∈ S as well, we have just proved
cone(k) ∈ J by Proposition 3.7. �

Proof of Theorem 3.6. We define the functor α : S−1K → K/J as the identity on
objects. Let a, b ∈ K. For any s ∈ S, we have cone(s�b) = cone(s)⊗b ∈ J. Therefore
q(s�b) is an isomorphism in K/J and we have a natural homomorphism

αa,b : (S−1Hom•K(a, b))0−→HomK/J(a, b)

f

s
7−→ q(s�b)

−1 ◦ f .

It is easy to deduce from Lemma 3.8 that αa,b is an isomorphism of abelian groups.
Indeed, Lemma 3.8 shows that any fraction in K/J can be amplified to have de-
nominator in S. Explicitly, a morphism a → b in K/J can be represented by a
fraction k−1g as in the upper row of the following diagram :

a
g // x

l

���
�
� b

koo

s�b||x
x

x
x

x

u⊗d ⊗ b
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with cone(k) ∈ J. Lemma 3.8 gives us a morphism l ∈ Homd
K(x, b) such that

l◦k = s�b for some s ∈ S. Then the morphism k−1 g is equal to αa,b(
lg
s ). Injectivity

of αa,b follows from Lemma 3.8 in a similar way. �

Corollary 3.9. Let p• ∈ Spech(R•K). The localization Kp• := S−1
p• K where Sp• ={

s ∈ Reven
K

∣∣ s /∈ p•
}

has graded central ring End•Kp•
(11) isomorphic to (R•K)p• . �

Corollary 3.10. Let S ⊂ EndK(11) be a multiplicative subset of the central ring RK.
Then the Verdier quotient S−1K of K by the thick triangulated ⊗-ideal 〈cone(s)

∣∣ s ∈
S〉 has the same objects as K and morphisms HomS−1K(a, b) = S−1HomK(a, b).

Proof. This can be checked as above or deduced from Theorem 3.6 (using any
invertible object u), using that for a graded R•-module M• and for S ⊂ R0, we
have (S−1M•)0 = S−1(M0). �

Corollary 3.11. Let p ∈ Spec(RK). Then the localization Kp := S−1
p K where

Sp := RK rp has central ring EndKp
(11) isomorphic to (RK)p. �

4. Local tensor triangulated categories

Definition 4.1. A tensor triangulated category K is local if Spc(K) is a local
topological space, that is, if any open cover Spc(K) =

⋃
i∈I Ui is trivial, in that

there exists i ∈ I such that Ui = Spc(K).

Proposition 4.2. The following are equivalent :

(i) The tensor triangulated category K is local (Def. 4.1).
(ii) The space Spc(K) has a unique closed point.
(iii) The category K has a unique minimal prime.

(iv) The ideal ⊗
√

0 ⊂ K of ⊗-nilpotent objects is prime (and is the minimal one).
(v) For any objects a, b ∈ K, if a⊗ b = 0 then a or b is ⊗-nilpotent.

If K is moreover rigid (Def. 1.5), then the above are further equivalent to :

(vi) If a⊗ b = 0 then a = 0 or b = 0. (In this case, 0 is the minimal prime.)

Proof. (i)⇒(ii) : If P and P′ were distinct closed points, then the cover Spc(K) =(
Spc(K)− {P}

)
∪
(

Spc(K)− {P′}
)

would contradict the local nature of Spc(K).
(ii)⇒(i) : Recall that any non-empty closed subset of Spc(K) contains a closed

point, by [1, Cor. 2.12]. So, if there is only one closed point M, any open subset
U ⊂ Spc(K) which contains M has an empty closed complement, i.e. U = Spc(K).

(ii)⇔(iii) : By [1, Prop. 2.9], the closure of a point P ∈ Spc(K) is described by

{P} =
{
Q ∈ Spc(K)

∣∣Q ⊂ P
}

. Hence closed points are just minimal primes.

(iii)⇔(iv) : Immediate from
⋂

P∈Spc(K) P = ⊗
√

0 ; see [1, Cor. 2.4].

(iv)⇔(v) : Just reformulation since a ∈ ⊗
√

0 if and only if a⊗n ∈ ⊗
√

0 for some n.

Finally, when K is rigid, ⊗
√

0 = 0 ; see [2, Cor. 2.5]. �

Example 4.3. For any prime P ∈ Spc(K) the category K/P is local. Indeed, in
K/P, the ideal 0 = P/P is a prime.

The reader’s intuition from commutative algebra might be puzzled by (iii) or (vi),
in Proposition 4.2, which look more like K being “integral”. Yet, Definition 4.1 is
the conceptual one and the following example should lift any doubt.
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Example 4.4. For a commutative ring A, the category Kb(A – proj) is local if and

only if A is local. Indeed, Spc(Kb(A – proj)) is homeomorphic to Spec(A) via

Spec(A)
∼−→ Spc(Kb(A – proj))

p 7−→ P(p) :=
{
M• ∈ Kb(A – proj)

∣∣ (M•)p ' 0
}

by [1, Cor. 6.3 (a)] and [9, Thm. 8.5]. Now, Spec(A) has a unique closed point if
and only if A is local. The subtlety is that the above map is inclusion-reversing :
p ⊂ q ⇒ P(p) ⊃ P(q).

Theorem 4.5. If the tensor triangulated category K is local (Def. 4.1), then R•K =
End•K,u(11) is a local graded ring. In particular, RK = EndK(11) is a local ring.

Proof. We have to prove that R•K admits a unique maximal homogeneous ideal,
which must then be the ideal generated by the non-invertible homogeneous ele-
ments. Since the product of a non-invertible with any other element remains non-
invertible, it suffices to check that the sum of two non-invertible elements of same
degree remains non-invertible. Let f, g ∈ Rd

K, for some d ∈ Z, be such that f + g is
invertible and let us prove that f or g is. In Notation 2.6, consider the morphism

(f + g)�cone(f)⊗cone(g) : cone(f)⊗ cone(g)−→u⊗d ⊗ cone(f)⊗ cone(g) .

We claim that this morphism is both invertible and nilpotent in the graded ring
End•K

(
cone(f)⊗cone(g)

)
. The former is clear since f+g is invertible by assumption.

To prove nilpotence, since f and g εu-commute, it suffices to show that both f and
g are nilpotent on cone(f) ⊗ cone(g). By Proposition 3.3, (f�cone(f)⊗cone(g))

2 =
f ⊗ f ⊗ idcone(f)⊗ idcone(g) = 0 by Proposition 2.13, and similarly for g. Hence for
some n ≥ 1, the morphism (f + g)n�cone(f)⊗cone(g) is both invertible and zero. This

forces cone(f) ⊗ cone(g) = 0. But K is local, so by Proposition 4.2 (v), we have
cone(f)⊗n = 0, or cone(g)⊗n = 0, for n ∈ N big enough. By Proposition 2.16, we
deduce cone(f) = 0 or cone(g) = 0, i.e. f or g is an isomorphism.

The second statement follows : For any R• local graded ring, R0 is local. �

Example 4.6. The converse to Theorem 4.5 does not hold. Consider K = Dperf(X)
for a non-local scheme X. It can nevertheless happen that EndK(11) = Γ(X,OX)
is local, say, when OX does not have many global sections, e.g. for X = Pnk .

5. From triangular spectrum to Zariski spectra

Let K be a tensor triangulated category. As before, we tacitly fix an invertible
object u ∈ K, like u = Σ(11), for instance. Recall the graded central ring R•K =
End•K(11) = HomK(11, u⊗•) of Section 3.

Definition 5.1. Let P ∈ Spc(K) be a triangular prime. We define ρ•K(P) ⊂ R•K as
the following homogeneous ideal :

ρ•K(P) := 〈f ∈ Rhom
K

∣∣ cone(f) /∈ P〉 .

Remark 5.2. Observe that ρ•K “reverses” inclusions : If P ⊂ Q are two primes of K,
then ρ•K(P) ⊃ ρ•K(Q) in R•K.

Theorem 5.3. Let K be a tensor triangulated category. Let u ∈ K be an invertible
object and recall the graded central ring R•K = R•K,u of Definition 3.2. Then
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(a) Let P ∈ Spc(K). The subset ρ•K(P) ⊂ R•K is a homogeneous prime ideal,
equal to the preimage under the localization homomorphism R•K → R•K/P of
the maximal homogeneous ideal of R•K/P.

(b) The map ρ•K : Spc(K)→ Spech(R•K) is continuous. More precisely, for any

s ∈ R•K homogeneous, the preimage of the principal open D(s) ⊂ Spech(R•K)
is the open U(cone(s)) ⊂ Spc(K) ; see Def. 1.3.

(c) The above defines a natural transformation ρ• between the contravariant

functors K 7→ Spc(K) and K 7→ Spech(R•K) from the category of tensor tri-
angulated categories (with tensor triangulated functors respecting the chosen
invertible objects) to the category of topological spaces.

Proof. Consider the localization functor q : K−→L := K/P. Choose q(u) as
invertible in L. The functor q gives us in particular a ring homomorphism f 7→ q(f)

R•K = Hom•K(11K, 11K)
q→Hom•L(11L, 11L) = R•L .

Since the category L is local (Ex. 4.3) we know by Theorem 4.5 that R•L is a local

graded ring, with maximal ideal m• := 〈f ∈ Rhom
L

∣∣ f is not invertible〉. For a
morphism f in K, since q : K−→L is exact, we have cone(q(f)) ' q(cone(f))
and for an object x ∈ K, we have q(x) = 0 if and only if x ∈ P. Therefore

ρ•K(P) = 〈f ∈ Rhom
K

∣∣ q(f) is not invertible〉 = q−1(m•). So, ρ•K(P) is the image of

m• by the map Spech(q) : Spech(R•L)→ Spech(R•K). Hence (a).
For (b), unfolding the definitions, we see that P ∈ (ρ•K)−1(D(s)) if and only if

cone(s) ∈ P, that is, P ∈ U(cone(s)) see Definition 1.3.
Finally, for (c), let F : K→ K′ be a morphism of tensor triangulated categories,

that is, an exact ⊗-functor. We have the fixed invertible objects u in K and
u′ = F (u) in K′. Let us also denote by F : R•K → R•K′ , f 7→ F (f), the induced ring
homomorphism. We need to prove the commutativity of the following diagram :

Spc(K′)
SpcF //

ρ•
K′

��

Spc(K)

ρ•K
��

Spech(R•K′)
Spech F

// Spech(R•K) .

Let P′ ∈ Spc(K′) and recall that (SpcF )(P′) = F−1(P′). For f ∈ Rhom
K , un-

folding the definitions, we have f ∈ ρ•K((SpcF )(P′)) ⇔ cone(f) /∈ (SpcF )(P′) =
F−1(P′) ⇔ F (cone(f)) /∈ P′. Now, F being exact, F (cone(f)) = cone(F (f)) and
the condition becomes equivalent to cone(F (f)) /∈ P′ ⇔ F (f) ∈ ρ•K′(P

′) ⇔ f ∈
F−1(ρ•K′(P

′)) = (Spech F )(ρ•K′(P
′)). �

Theorem 5.4. Let S ⊂ R•K be a central homogeneous multiplicative subset and let
q : K→ S−1K be the corresponding localization (see Thm. 3.6). Then the diagram

Spc(S−1K)
� � Spc(q) //

ρ•
S−1K

��

Spc(K)

ρ•K
��

Spech(R•S−1K) = Spech(S−1 R•K)
� � // Spech(R•K) ,

commutes and is cartesian : Spc(S−1K) ∼=
{
P ∈ Spc(K)

∣∣S ∩ ρ•K(P) = ∅
}

.
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Proof. The diagram commutes by naturality of ρ• (Thm. 5.3 (c)). As in Theo-
rem 3.6, let J = 〈cone(s) | s ∈ S〉, so that S−1K = K/J. We know that Spc(S−1K)
is homeomorphic, via Spc(q), to

{
P ∈ Spc(K)

∣∣ J ⊂ P
}

; see Remark 1.4. By defini-
tion of J, we have J ⊂ P if and only if cone(s) ∈ P for all s ∈ S, which is equivalent
to s /∈ ρ•K(P) for all s ∈ S, by Definition 5.1. �

Remark 5.5. For each Z-graded ε-commutative ring R•, we have a continuous map
(−)0 : Spech(R•)−→ Spec(R0), p• 7→ p0 = p• ∩ R0. This is natural in R•, with
respect to homogeneous ring homomorphisms.

Note that this map is surjective. Indeed, let p ∈ Spec(R0). We can localize at p
(invert S = R0 r p) and reduce to the case where R0 is local with maximal ideal p.
Then any homogeneous prime q• containing the proper ideal p ·R• (e.g. a maximal
one) will satisfy q• ∩ R0 = p : One inclusion since q• contains p and the other one
since p is maximal.

Composing ρ•K with the map (−)0 yields the following corollary.

Corollary 5.6. Let K be a tensor triangulated category and let P ∈ Spc(K). We
define ρK(P) ⊂ RK = EndK(11) as the following subset :

(5.1) ρK(P) :=
{
f ∈ RK

∣∣ cone(f) /∈ P
}
.

(This does not rely on the choice of an invertible object u ∈ K.) Then we have :

(a) For each P ∈ Spc(K), the subset ρK(P) ⊂ RK is a prime ideal.
(b) The map ρK : Spc(K) → Spec(RK) is continuous, natural in K, and the

following diagram commutes :

Spc(K)
ρ•K //

ρK &&LLLLLLLLLL Spech(R•K)

(−)0

��
Spec(RK) .

(c) Let S ⊂ RK be a multiplicative subset and let q : K → S−1K be the corre-
sponding localization (see Cor. 3.10). Then the commutative diagram

Spc(S−1K)
� � Spc(q) //

ρS−1K

��

Spc(K)

ρK

��
Spec(RS−1K) = Spec(S−1 RK)

� � // Spec(RK)

is cartesian, i.e. Spc(S−1K) ∼=
{
P ∈ Spc(K)

∣∣S ∩ ρK(P) = ∅
}

.

Proof. The diagram in (b) commutes by definition ; see (5.1). Therefore (a) and
the rest of (b) follow. Only (c) requires some comment. Indeed, it follows from
Theorem 5.4 and the following facts : For any graded ring R• and any multiplicative
subset S ⊂ R0, we have (S−1R•)0 = S−1R0 and the commutative diagram

Spech(S−1R•)
� � //

(−)0

��

Spech(R•)

(−)0

��
Spec(S−1R0)

� � // Spec(R0)

is cartesian. Indeed, for p• ∈ Spech(R•) we have p• ∩ S = ∅ ⇔ p0 ∩ S = ∅. �
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Remark 5.7. Not only are the spaces Spc(K), Spech(R•K) and Spec(RK) spectral in
the sense of Hochster [14] but Theorem 5.3 (b) shows that ρ•K and ρK are spectral
maps, namely the preimage of a quasi-compact open is quasi-compact.

6. Locally ringed space structures

The spectrum Spc(K) of a tensor triangulated category K can be turned into a
ringed space, as explained in [1, § 6]. We recall the definition, introduce a graded
version of it, and then compare these structure sheaves with the ones on Spec(RK)

and on Spech(R•K) ; see Rem. 3.4. More important than the sheaf of rings, the fun-
damental geometric feature is the following “presheaf” of triangulated categories.

Throughout this section, K is a rigid (Def. 1.5) tensor triangulated category. We
use this assumption to deduce that any thick triangulated ⊗-ideal J of K is radical,
that is x⊗n ∈ J⇒ x ∈ J (see [1, Prop. 2.4]).

Construction 6.1. Let U ⊂ Spc(K) be a quasi-compact open with closed comple-
ment Z. Define KZ :=

{
a ∈ K

∣∣ supp(a) ⊂ Z
}

to be the thick triangulated ⊗-ideal
of K supported outside U . Then define the tensor triangulated category “K on U”

(6.1) K(U) :=
(
K/KZ)\

as the idempotent completion (−)\ of the Verdier quotient K/KZ . This quotient is
the localization S−1K with respect to S =

{
s : a → b

∣∣ supp(cone(s)) ⊂ Z
}

. By
construction we have a natural functor

qU : K−→K(U) .

It sends in particular the unit 11 = 11K ∈ K to the unit 11K(U), which we simply
denote 11U . We will consider endomorphism rings of these unit objects. The above
idempotent completion is harmless for the sequel since the inclusion K ↪→ K\ is fully
faithful but (6.1) is the right definition of K(U) in view of geometric examples ; see
more in [1, Rem. 6.2] including the reference to Thomason’s localization theorem.

Remark 6.2. The space Spc(K) has a basis of quasi-compact open subsets ; see [1,
Rem. 2.7 and Prop. 2.14]. We tacitly use this fact everywhere by describing our
presheaves on such opens only. This is enough for the associated sheaves anyway.
We focus on quasi-compact opens when defining K(U) because Spc(K(U)) ∼= U if
and only if U is quasi-compact ; see [1, Cor. 2.15] and [6, Prop. 1.11].

Lemma 6.3. Let P ∈ Spc(K) and let a, b ∈ K. There is a natural isomorphism

colim
U3P

HomK(U)(a, b)
∼→ HomK/P(a, b), where the colimit is taken over the quasi-

compact open subsets of Spc(K) containing the point P.

Proof. Since we are considering a, b ∈ K, and since idempotent completion is
fully faithful, we have for every U that HomK(U)(a, b) = HomK/KZ

(a, b) where
Z = Spc(K) r U . A morphism in the localization K/KZ is the equivalence class

of a fraction a
s← x → b where supp(cone(s)) ⊂ Z, the equivalence being with re-

spect to amplification, as usual. Letting U shrink among the quasi-compact opens
containing P, it is easy to check that the stated colimit amounts to the equivalence

classes of fractions a
s← x→ b where supp(cone(s)) ⊂ Spc(K)r{P}, which is equiv-

alent to cone(s) ∈ P. Such fractions precisely describe the morphisms in K/P. �
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Definition 6.4. For each quasi-compact open U ⊂ Spc(K), define the commutative
ring pOK(U) and the εu-commutative Z-graded ring pO•K(U) by

pOK(U) := RK(U) = EndK(U)(11U ) and pO•K(U) := R•K(U) .

For the right-hand graded ring (Def. 3.2), some invertible object u ∈ K is assumed
fixed beforehand, for instance u = Σ(11) and we use its image in K(U). These
pOK and pO•K are partially-defined presheaves on Spc(K), only defined on an open
basis ; see Remark 6.2. Their associated sheaves on the space Spc(K) are denoted

OK := p̃OK and O•K := p̃O•K .

Finally, we denote the ringed spaces thus obtained by

Spec(K) :=
(

Spc(K),OK

)
and Spec•(K) :=

(
Spc(K),O•K

)
.

Note that they are both defined on the same space, namely the spectrum of K.

Proposition 6.5. Let P ∈ Spc(K). The stalk of O•K and of pO•K at P are naturally
isomorphic to R•K/P. In particular, the stalk of OK and of pOK at P are naturally
isomorphic to RK/P.

Proof. It follows directly from Lemma 6.3 applied to a = 11 and b = u⊗i that the
stalk at P of the presheaf U 7→ Ri

K(U) is Ri
K/P for all i ∈ Z. This gives the result for

the presheaves pOK and pO•K , hence for the associated sheaves OK and O•K. �

Corollary 6.6. The ringed space Spec(K) is a locally ringed space.

Proof. By Proposition 6.5, it suffices to prove that RK/P is a local ring. This holds
by Theorem 4.5 since the category K/P is local (see Ex. 4.3). �

Remark 6.7. The author doesn’t know whether the concept of “locally graded ringed
space” exists but the proof of Corollary 6.6 applies to Spec•(K) as well, showing
that the stalks of O•K are local in the graded sense.

Remark 6.8. We now want to show that the continuous maps ρK : Spc(K) →
Spec(RK) and ρ•K : Spc(K) → Spech(R•K) of Section 5 can be upgraded into mor-
phisms of locally ringed spaces.

Recall that a morphism ρ : (X,OX) → (Y,OY ) of ringed spaces consists of a
continuous map ρ : X → Y together with ring homomorphisms rU : OY (U) →
OX(ρ−1(U)) for all open U ⊂ Y , in a compatible way with the restrictions. As
usual, it is enough to do so on a basis of the topology of the base space Y .

Lemma 6.9. For every homogenous s ∈ Reven
K there is a natural isomorphism be-

tween the sections of the sheaf O•
Spech(R•

K
)

over the principal open D(s) of Spech(R•K)

and the sections of the presheaf pO•K over the preimage (ρ•K)−1(D(s)) = U(cone(s)).
They are both naturally isomorphic to R•K[ 1

s ].
There is an analogous obvious ungraded statement for s ∈ RK mutatis mutandis.

Proof. By definition, O•
Spech(R•

K
)
(D(s)) = R•K[ 1

s ]. On the other hand, we know by

Theorem 5.3 (b) that the preimage of D(s) under ρ•K : Spc(K) → Spech(R•K) is
U(s) := U(cone(s)). Finally pO•K(U(s)) = R•K(U(s)) can be computed by Theo-

rem 3.6 applied to S =
{
si
∣∣ i ≥ 0

}
. (This uses K rigid to prove that Ksupp(cone(s))

is indeed 〈cone(s)〉 and not just ⊗
√
〈cone(s)〉.) This yields R•K[ 1

s ] as well. Hence
the result. The ungraded statement follows by contemplating degree zero only. �
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Construction 6.10. For every s ∈ Reven
K , let U(s) := U(cone(s)) = (ρ•K)−1(D(s)) ⊂

Spc(K) and define the ring homomorphism

rD(s) : O•Spech(R•
K

)(D(s))−→O•K(U(s))

as the composite of the isomorphismO•
Spech(R•

K
)
(D(s))

∼−→ pO•K(U(s)) of Lemma 6.9

followed by the (sheafification) morphism pO•K → O•K on U(s). This construction
is compatible with restriction and defines a morphism of ringed spaces

(6.2) (ρ•K , r) : Spec(K)−→ Spech(R•K) .

Concentrating on the degree zero part (hence allowing s ∈ RK only), we obtain a
morphism of ringed spaces (ρK, r) : Spc(K)→ Spec(RK).

Proposition 6.11. The above morphisms are morphisms of locally ringed spaces.
Moreover, we have the following properties :

(a) For a prime P ∈ Spc(K), let p = ρK(P) ∈ Spec(RK) and p• = ρ•K(P) ∈
Spech(R•K). The induced homomorphisms on stalks are the natural ones,
(RK)p → RK/P and (R•K)p• → R•K/P , given by localization at P.

(b) If ρK or ρ•K is a homeomorphism on the underlying spaces, it is automati-
cally an isomorphism of ringed spaces.

Proof. We prove the graded version. The ungraded version can be proved similarly.
For readability, let us abbreviate ρ := ρ•K : Spc(K)→ Spech(R•K) on spaces.

Localization qP : K → K/P induces a ring homomorphism R•K → R•K/P. By

Theorem 5.3 (a), the preimage under this homomorphism of the maximal ideal
of R•K/P is precisely the ideal p• = ρ(P) ⊂ R•K. Hence, the induced morphism

of local rings ` : (R•K)p• → R•K/P is local (the image of the maximal ideal of the

source is contained in the maximal ideal of the target). We claim that this morphism
` : (R•K)p• → R•K/P is precisely the one induced stalkwise by the morphism of ringed

spaces Spec•(K) → Spech(R•K) above. Recall Proposition 6.5. An element f
s ∈

(R•K)p• defines an element of End•K(U(s))(11U(s)) whose class in K/P is precisely `( fs ).

This yields Part (a). Hence our morphism of ringed spaces is stalkwise local, so it
is a morphism of locally ringed spaces.

Part (b) is then easy to deduce from Lemma 6.9. Indeed, assuming the two spaces
are the same, the presheaf pO•K agrees with the sheaf O•

Spech(R•
K

)
on principal opens.

Consequently its sheafification O•K is exactly O•
Spech(R•

K
)

as claimed. �

So much for structure sheaves. We now return to spectra.

7. Two criteria for surjectivity

We want to give conditions for the maps ρ•K : Spc(K) → Spech(R•K) and ρK :
Spc(K)→ Spec(RK) to be surjective. First, we reduce to the case of R•K local.

Proposition 7.1. Let p• ∈ Spech(R•K) be a homogeneous prime. Consider the
localization L := Kp• = S−1

p• K of Corollary 3.9. We know that R•L
∼= (R•K)p• is

a local graded ring. Suppose that the maximal homogeneous ideal of R•L belongs to
the image of ρ•L. Then p• belongs to the image of ρ•K.
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Proof. By naturality of ρ•, the following diagram commutes :

Spc(L) � � //

ρ•L
��

Spc(K)

ρ•K
��

Spech(R•L) = Spech((R•K)p•)
� � // Spech(R•K) .

Since the lower map sends the maximal ideal of R•L to p•, we get the result. �

The above can be combined with the following :

Proposition 7.2. Let K be a tensor triangulated category such that R•K is local
with maximal homogeneous ideal m•. Then the following conditions are equivalent :

(i) There exists a prime P ∈ Spc(K) such that ρ•K(P) = m•.
(ii) For every n ≥ 1 and every homogeneous f1, . . . , fn ∈ m•, the product of

their cones cone(f1)⊗ · · · ⊗ cone(fn) is non-zero in K.

Proof. Suppose that ρ•K(P) = m• and let f1, . . . , fn ∈ R•K be homogeneous elements
such that cone(f1)⊗· · ·⊗cone(fn) = 0 ∈ P. Since P is prime, this implies cone(fi) ∈
P for some 1 ≤ i ≤ n. By Definition 5.1 this means fi /∈ ρ•K(P), hence fi /∈ m•.

Conversely, suppose that S :=
{

cone(f1) ⊗ · · · ⊗ cone(fn)
∣∣n ≥ 1, f1, . . . , fn ∈

m• homogeneous
}
∪ {11} does not contain zero. This S is ⊗-multiplicative by

construction. By Zorn, more precisely by [1, Lemma 2.2 applied to J = 0], there
exists a prime P ∈ Spc(K) such that P ∩ S = ∅. Hence, for every homogeneous
f ∈ m•, we have cone(f) ∈ S, so cone(f) /∈ P, that is f ∈ ρ•K(P), by Definition 5.1.
We have shown m• ⊂ ρ•K(P) and this is enough since m• is maximal. �

We now turn to the situation where R•K is coherent. We shall say that a graded
ring is coherent if every finitely generated homogeneous ideal is finitely presented.
Of course, a noetherian ring is coherent.

For this part, we choose the invertible object u = Σ(11). That is, we have

Hom•K(a, b) = HomK(a,Σ•b)

for any a, b ∈ K and in particular, R•K = HomK(11,Σ•11).

Theorem 7.3. Let K be a tensor triangulated category such that R•K is coherent

(e.g. noetherian). Then the map ρ•K : Spc(K)→ Spech(R•K) is surjective.

We prove this result below. By surjectivity of (−)0 : Spech(R•K) → Spec(RK),
see Rem. 5.5, and since ρK = (−)0 ◦ ρ•K, see Cor. 5.6 (b), we immediately have :

Corollary 7.4. Let K be a tensor triangulated category such that R•K is coherent
(e.g. noetherian). Then the map ρK : Spc(K)→ Spec(RK) is surjective. �

The key application of the coherence assumption is the following proposition.
Recall that a graded module is coherent if it is finitely presented and if any finitely
generated graded submodule is finitely presented as well.

Proposition 7.5. Suppose that R•K is coherent (e.g. noetherian) and local, with
maximal homogeneous ideal m•. Let f ∈ m• be homogeneous and let a ∈ K be an
object such that Hom•K(11, a) is non-zero and coherent as graded R•K-module. Then
Hom•K(11, a⊗ cone(f)) is non-zero and coherent as well.
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Proof. Let d ∈ Z be the degree of f . We have a distinguished triangle

a
f�a // Σd(a) // a⊗ cone(f) // Σa

which induces a long exact sequence under the homological functor HomK(11,−).
This long exact sequence can be wrapped up (⊕) into a periodic exact sequence

(7.1)

Hom•K(11, a)
·f
(d)

// Hom•K(11, a)

vvmmmmmmmmmmmm

Hom•K(11, a⊗ cone(f))

(1)

hhQQQQQQQQQQQQ

of graded R•K-modules, where (d) and (1) indicate homogeneous R•K-linear homo-
morphisms of degree d and 1 respectively. (Here we used our choice of u = Σ(11).)
If, ab absurdo, the lower module in (7.1) is zero, it means that f acts surjec-
tively on the coherent, hence finitely generated R•K-module Hom•K(11, a). Since
f ∈ m•, by the graded version of Nakayama’s Lemma (see [20, 1.10]), we would
have Hom•K(11, a) = 0, which is excluded. Hence the lower module is non-zero as
claimed. The fact that it remains coherent is immediate : It fits in a short exact
sequence with the cokernel and the kernel of the horizontal map ·f of (7.1), which
are both coherent. See [10, Prop. 1.2 and comments before Prop. 1.1]. �

Proof of Theorem 7.3. Since the localization of a coherent graded ring remains co-
herent (extend [12, Thm. 3] to graded-commutative), we can use Propositions 7.1
and 7.2 to assume that R•K is local and coherent and reduce the proof to show-
ing that cone(f1) ⊗ · · · ⊗ cone(fn) 6= 0 for any homogeneous f1, . . . , fn ∈ m•. By
Proposition 7.5, we even have the stronger fact that

Hom•K
(
11, cone(f1)⊗ · · · ⊗ cone(fn)

)
6= 0

by induction on n ≥ 1. (Take of course a = 11 when n = 1.) �

* * *

We now prove surjectivity of ρK : Spc(K)→ Spec(RK) for another class of tensor
triangulated categories.

Definition 7.6. Let us say that K is connective if HomK(11,Σi(11)) = 0 for all i > 0.

Remark 7.7. Maybe surprisingly, this property is self-dual : If K is connective then
Kop is connective as well. This comes from the fact that the suspension in Kop

must be Σ−1. In other words, the results below cannot be applied merely under
the “complementary” assumption that HomK(11,Σi(11)) = 0 for i < 0, by claiming
duality. Applying the following results to Kop gives the same results.

As in Propositions 7.1 and 7.2, we have reductions to the local case :

Proposition 7.8. Let p ∈ Spec(RK) be a prime. Consider the localization L := Kp

of Corollary 3.11. We know that the ring RL = (RK)p is local. Suppose that the
maximal ideal of RL belongs to the image of ρL. Then p belongs to the image of ρK.

Proof. Easy exercise on the naturality of ρ, as in the proof of Proposition 7.1. �

Proposition 7.9. Let K be a tensor triangulated category whose central ring RK

is local with maximal ideal m. Then the following conditions are equivalent :
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(i) There exists a prime P ∈ Spc(K) such that ρK(P) = m.
(ii) For every n ≥ 1 and every f1, . . . , fn ∈ m, the product of their cones

cone(f1)⊗ · · · ⊗ cone(fn) is non-zero in K.

Proof. Same proof as Proposition 7.2. �

Lemma 7.10. Let K be connective. Let f1 , . . . , fn ∈ RK. Let c = cone(f1)⊗ · · ·⊗
cone(fn) ∈ K be the product of their cones. Then, we have :

(a) HomK(11,Σi(c)) = 0 for all i > 0.

(b) There is a natural isomorphism RK /〈f1 , . . . , fn〉
∼→ HomK(11, c).

Proof. By induction on n ≥ 0. For n = 0, that is for c = 11, statement (a) is the
connectivity assumption and (b) is trivial. Consider d = cone(f1)⊗· · ·⊗cone(fn−1)
and the distinguished triangle

d
(fn)�d // d // c // Σ(d)

obtained by tensoring d with the triangle defining cone(fn). Consider the long exact
sequence obtained by applying HomK(11,−) to the above triangle (and Prop. 2.2) :

· · · → HomK(11,Σid)
·fn−→HomK(11,Σid)→ HomK(11,Σic)→ HomK(11,Σi+1d)→ · · ·

for i ∈ Z. The induction hypothesis (for d) applied to this long exact sequence
around i > 0 gives (a) ; applied around i = 0, it gives (b). �

Proposition 7.11. Let K be a connective tensor triangulated category and let
I ( RK be a proper ideal. Then for any f1 , . . . , fn ∈ I the product of their cones
does not vanish : cone(f1)⊗ · · · ⊗ cone(fn) 6= 0.

Proof. By Lemma 7.10 (b), we have HomK(11, cone(f1)⊗ · · · ⊗ cone(fn)) 6= 0. �

Corollary 7.12. Let K be a connective tensor triangulated category such that RK

is local with maximal ideal m. Then there exists P ∈ Spc(K) such that ρK(P) = m.

Proof. It suffices to check condition (ii) of Proposition 7.9 and this follows from
Proposition 7.11 applied to I = m. �

Theorem 7.13. Let K be a connective tensor triangulated category (Def. 7.6).
Then the map ρK : Spc(K)−→ Spec(RK) is surjective.

Proof. This is immediate from Proposition 7.8 and Corollary 7.12 once we know
that Kp remains connective for any p ∈ Spec(RK). This is obvious by construction

of Kp = S−1
p K (see Cor. 3.11), since Sp = RK rp sits in degree zero. �

Corollary 7.14. Let K be a connective tensor triangulated category such that
R<0

K = ⊕i<0HomK(11,Σi11) is a nil-ideal. (In more topological notations, we are
assuming that any element f : Σj11→ 11 is zero for j < 0 and nilpotent for j > 0.)

Then Spech(R•K) ∼= Spec(RK) via (−)0. In particular, ρ•K : Spc(K) → Spech(R•K)
coincides with ρK and is surjective.

Proof. We have the commutative diagram of Corollary 5.6 (b) and we know by

Theorem 7.13 that ρK is surjective. So, it suffices to show that (−)0 : Spech(R•K)→
Spec(RK), p• 7→ p0 is a bijection. Since R<0

K is a homogeneous nil-ideal, it belongs to

all homogeneous prime ideals. Hence, we have p• = R<0
K ⊕p0 for all p• ∈ Spech(R•K)

and the bijection follows easily. �
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8. Some examples, old and new

Proposition 8.1. Let A be a commutative ring and let K = Kb(A – proj) be the

tensor triangulated category of perfect complexes. Then ρK : Spc(Kb(A – proj)) →
Spec(A) is a homeomorphism, inverse to the one given in Example 4.4.

Proof. Recall that the homeomorphism Spec(A)
∼→ Spc(Kb(A – proj)) is given by

p 7→ P(p) =
{
M• ∈ Kb(A – proj)

∣∣ (M•)p = 0 in Kb(Ap – proj)
}

. Let p ∈ Spec(A).
We need to show that ρK(P(p)) = p. This is easy : For f : 11 → 11, i.e. for f ∈ A,
we have by Definition of ρK in (5.1) that f ∈ ρK(P(p)) ⇔ cone(f) /∈ P(p) ⇔ the

image of f : 11→ 11 is not invertible in Kb(Ap – proj) ⇔ the image of f in Ap is not
invertible ⇔ f ∈ p. �

Remark 8.2. For a non-affine scheme X, this result fails for K = Dperf(X), simply
because there aren’t always enough global sections, as can be checked for X = Pnk .
However, in this case, or more generally if X = Proj(A•) is a projective scheme for
A• such that the natural map Ad → Γ(X,O(d)) is an isomorphism for large d (see

for instance [13, Ex. 2.5.9, p. 125]) and such that A0 = Γ(X,OX), then Spech(A•) =

Spech(Γ(X,O(•))). In this case, we can choose u = O(1) as invertible object in K

and the map ρ•K : Spc(Dperf(X))−→ Spech(A•) induces a homeomorphism onto X.
This is similar to the above, using [1, Cor. 5.6], and is left to the reader.

I’m thankful to Ch. Walter for the following example of non-surjectivity of ρK.

Example 8.3. Let (A,m) be a regular local ring and U = Spec(A) r {m} be its

punctured spectrum. Let K = Dperf(U). When d = dimKrull(A) ≥ 2, we have
RK = A and Spec(RK) = Spec(A) which is strictly bigger than U = Im(ρK). In

fact, R•K ' A ⊕ Rd−1
K where Rd−1

K = Hd−1(U,OU ) is an injective envelope of the
residue field A/m and this non-connective R•K isn’t coherent either.

Remark 8.4. The above proof of Proposition 8.1 uses the classification of thick tri-
angulated ⊗-ideals, hidden in [1, Cor. 5.6]. Yet our Theorem 7.13 proves surjectivity
of ρK : Spc(K)−→ Spec(A) without the classification. It is therefore interesting to
find a direct proof of injectivity, for this would yield a new proof of classification,
via [1, Thm. 4.10]. Actually such direct proofs of the injectivity of ρK do exist in
this case. There is a rather elementary such proof, using only perfect complexes,
but it is a little long to include here. Another proof, due to Amnon Neeman, uses
bigger categories but can be sketched as follows. The general machinery developed
above allows us to reduce to the case of (A,m) local and to show that the preimage
in Spc(K) of the maximal ideal consists only of the ideal zero. To do that, it suffices

to show that for any non-zero object X ∈ K = Dperf(A) there exists f1, . . . , fr ∈ m
such that Kos(f) ∈ 〈X〉, where Kos(f) := cone(f1)⊗· · ·⊗cone(fr). One can reduce
to A noetherian local. Then in the big derived category D(A), the complex X⊗L κ
is a finite sum of shifts of the residue field κ := A/m. Then, using the t-structure on
D(A), one can show by induction that any bounded complex with finite length ho-
mology belongs to 〈κ〉 and hence to the localizing triangulated subcategory 〈X〉loc

generated by X in D(A). In particular, if f = (f1, . . . , fr) is a sequence generat-
ing m, we have Kos(f) ∈ 〈X〉loc∩K. Since the object X ∈ K = (D(A))c is compact
in the compactly generated D(A), we can use a general result of triangulated cate-
gories, see Neeman [27, Thm. 4.4.9], which implies here that 〈X〉loc ∩K = 〈X〉 and
we are done.
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* * *

Let us switch to modular representation theory. The following result is new
although known to some experts (announced for instance in talks by Julia Pevtsova,
joint work with Paul Smith; see also Benson et al. [7]) :

Proposition 8.5. Let G be a finite group (scheme) and k be a field. Consider

K = Db(kG – mod) with ⊗ = ⊗k. Its graded central ring R•K (Def. 3.2) is H•(G, k)

and the map ρ•K : Spc(Db(kG – mod))→ Spech(H•(G, k)) is a homeomorphism.

Proof. Let J = Kb(kG – proj) ⊂ K. By Rickard [30], the quotient K/J is equivalent
to the stable category kG – stab, whose spectrum is described in [1, Cor. 5.10] as

ϕ : Proj(H•(G, k))
∼−→ Spc(kG – stab)

p• 7−→ P(p•) :=
{
M
∣∣ AnnH•(G,k)(H

•(G,M)) 6⊂ p•
}
.

We then have the following picture :

Spc(K/J) = Spc(kG – stab) � � // Spc(K)

ρ•K
��

{0}? _oo

��
Proj(H•(G, k))

� � //

'ϕ

OO

Spech(H•(G, k)) {H+(G, k)}? _oo

We claim that this diagram commutes. Indeed, the graded ring H•(G, k) is local
with maximal ideal H+(G, k). We claim that K is local as well. This is obvious since

we have a forgetful ⊗-functor K→ Db(k) whose kernel is zero (exactness of a com-
plex of kG-modules being a property of the underlying complex of vector spaces). So
0 ∈ Spc(K) and K is local by Proposition 4.2. It is obvious that ρ•K(0) = H+(G, k)
since no homogeneous element of positive degree can be invertible. Then the right-
hand square of the above diagram commutes. To check that the left-hand square
also commutes, consider a homogeneous prime p• ∈ Proj(H•(G, k)) and a homo-

geneous element f ∈ Hd(G, k) for some d ≥ 0. Let q : K−→ kG – stab be the
localization functor. Then, f ∈ ρ•K(q−1(P(p•))) ⇐⇒ cone(f) /∈ q−1(P(p•)) ⇐⇒
q(cone(f)) /∈ P(p•) ⇐⇒ AnnH•(G,k)(H

•(G, q(cone(f)))) ⊂ p• ⇐⇒ p• ∈
V (AnnH•(G,k)(H

•(G, q(cone(f))))) = V (f). The last equality comes from the fact
that q(cone(f)) = cone(q(f)) is the suspension of the so-called Carlson module Lf ,
whose support is known to be V (f) ; see [8, Prop. II.5.9.1, p. 186]. In short, we have
f ∈ ρ•K(q−1(P(p•))) ⇐⇒ f ∈ p•, which proves ρ•K(q−1(ϕ(p•))) = p•, as wanted.

Finally, we claim that Spc(K) = Spc(K/J)∪{0}. This follows from the fact that

every non-zero ⊗-ideal P ⊂ K contains kG. Indeed, for any M• ∈ Db(kG – mod),

we have by Frobenius reciprocity that kG ⊗ M• ' indGe ◦ resGe (M•) and since

resGe (M•) ∈ Db(k – mod), the complex resGe (M•) is isomorphic to a complex of vec-
tor spaces with zero differentials. So, if M• 6= 0 then kG⊗M• has a direct summand
isomorphic to kG. Hence if 0 6= P ∈ Spc(K) then J = Kb(kG – proj) = 〈kG〉 ⊂ P,
that is, P belongs to the image of Spc(K/J) ↪→ Spc(K) ; see Remark 1.4.

We have shown that the above diagram commutes, that the top row describes
a partition Spc(K) = Spc(K/J) ∪ {0} formed by the closed point {0} and its open
complement Spc(K/J). Since ρ•K is a bijection on both parts, we see that ρ•K is
bijective. Since ρ•K is continous, it only remains to check that it is open. This is
very easy. The only open subset of Spc(K) which contains {0} is the whole Spc(K).
Any other open of Spc(K) will be in Spc(K/J), hence will have an open image in

Proj(H•(G, k)), which is itself open in Spech(H•(G, k)). �
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Remark 8.6. In this example of K = Db(kG – mod), like for the case of Kb(A – proj),
the general results of Section 7 actually provide a proof of the surjectivity of
ρ•K : Spc(Db(kG – mod))−→ Spech(H•(G, k)) without using classification results.
Indeed, H•(G, k) is noetherian by the Venkov-Evens Theorem (see [8, Thm. II.4.2.1,
p. 126]) so we can apply Theorem 7.3. It would be interesting to prove injectivity
directly, in the spirit of Remark 8.4. Again, such a direct proof would provide a
new proof of classification, via general tensor triangular theory [1, Thm. 4.10].

* * *

Section 7 also applies to the following more analytic example.

Example 8.7. Let G be a compact (Lie) group and KKG the tensor triangulated
category which has separableG-C∗-algebras as objects, equivariant Kasparov’sKK-
theory as morphisms and tensor given by the minimal tensor product with diag-
onal G-action. Details can be found in Meyer’s survey [23] or in Dell’Ambrogio’s
thesis [11, Chapter 5]. Here, the ring RKKG = KKG

0 (C,C) = KG
0 (C) =: R(G)

is the Grothendieck group of continuous complex representations of G, following
Segal [31]. Dell’Ambrogio proves by other techniques that ρKG : Spc(KG) →
Spec(R(G)) is split surjective when G is finite and where KG is the triangu-
lated subcategory of KKG generated by the unit. He also proves that the map
ρKG : Spc(KG) → Spec(R(G)) is a homeomorphism for G trivial and conjectures
that this holds for all finite groups. With Corollary 7.4 we can generalize the
surjectivity from finite groups to any compact group. This is also a new result.

Corollary 8.8. Let G be a compact Lie group. With the above notation, the con-
tinuous map ρKKG : Spc(KKG) → Spec(R(G)) is surjective. Consequently, so is
ρKG : Spc(KG)→ Spec(R(G)).

Proof. By Bott periodicity Spech(R•KKG) = Spec(RKKG). Also, KKG
1 (C,C) =

KG
1 (C) = R(G) ⊗K1(C) = 0 ; see [28, Rem. 2.8.5]. So, Ri

KKG = 0 for i odd. It is
a result of Segal [31, Cor. 3.3] that R(G) is noetherian for any compact Lie group
and consequently R•KKG is noetherian as well. Corollary 7.4 then gives the result.
The last statement follows since ρKKG factors via ρKG , using KG ↪→ KKG. �

9. Spectra of topological spectra

Let us consider the tensor triangulated category K = SHfin, the topological stable
homotopy category of finite spectra ; see [22]. The tensor product is induced by the
smash product and the unit 11 = S0 is the sphere spectrum. We have RK = Z and
R•K is connective with nilpotent R<0

K . So, by Corollary 7.14, we can focus on ρK.
Let us denote the set of prime numbers by P ⊂ N = {0, 1, 2, 3, . . .}. Let p ∈ P and

let SHfin
(p) be the localization of SHfin at p, as in Corollary 3.11 applied to p = pZ.

We recall the following major result from Hopkins and Smith [15] ; see also [29].

Theorem 9.1 (Hopkins-Smith). Let p ∈ P be a prime. Recall that Morava K-

theories define a collection of functors Kp,n : SHfin
(p)−→Vp,n into ⊗-categories Vp,n

of free graded modules, with index n ∈ N. All functors Kp,n satisfy a Künneth
formula, i.e. they are ⊗-functors. Let Cp,n := Ker(Kp,n). Then,

0 =: Cp,∞ ( · · · ( Cp,n ( Cp,n−1 ( · · · ( Cp,1 ( Cp,0 ( SHfin
(p)

are all the thick triangulated ⊗-ideals of SHfin
(p). Moreover, ∩n∈N Cp,n = 0.
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Corollary 9.2. Every proper thick triangulated ⊗-ideal of SHfin
(p) is prime. In

particular, SHfin
(p) is a local tensor triangulated category (see Def. 4.1).

Proof. Indeed, since Kp,n satisfies a Künneth formula and since the graded tensor
product V1⊗̂V2 of two free graded modules cannot vanish unless one of the factors
is zero, Ker(Kp,n) is prime for every n ≥ 0. Hence so is their intersection Cp,∞ = 0.

Then SHfin
(p) is local by Proposition 7.8 (iii). �

Example 9.3. For n = 0, the Morava K-theory Kp,0 is rational (singular) ho-
mology : Kp,0 = H∗(−,Q) and Cp,0 is therefore the subcategory of torsion finite

spectra localized at p. Note that the preimage of Cp,0 in SHfin under the localization

functor SHfin−→ SHfin
(p) is the subcategory of torsion finite spectra, SHfin

tor , that is,
the kernel of rational homology. In particular, it is independent of p.

Proposition 9.4. Let p ∈ P be a prime. The central ring RSHfin
(p)

= Z(p) is the ring

of integers localized at p. The map ρ := ρ SHfin
(p)

: Spc(SHfin
(p))−→ Spec(Z(p)) maps

Cp,n to the maximal ideal pZ(p) for every n > 0 and maps Cp,0 to 0.

Proof. By definition, see (5.1), the prime ideal ρ(Cp,0) consists of all f ∈ R SHfin
(p)

=

Z(p) whose cone does not belong to Cp,0, i.e. is not torsion. So, ρ(Cp,0) =
{
f ∈

Z(p)

∣∣ f is not an isomorphism rationally
}

= 0.
As ρ is inclusion-reversing (Rem. 5.2), and as pZ(p) is maximal, in order to prove

ρ(Cp,n) = pZ(p) for all n ≥ 1, it suffices to prove it for n = 1. The Morava K-theory

Kp,1 is a direct summand of mod p topological K-theory. Hence Kp,1(S0 p−→S0)
is the zero map. Therefore, Kp,1(cone(p)) = 11⊕ 11(1) in Vp,1 and in any case it is
not zero. So cone(p) /∈ Ker(Kp,1) = Cp,1, i.e. p ∈ ρ(Cp,1) by definition ; see (5.1).
Therefore pZ(p) ⊂ ρ(Cp,1) and we have equality since pZ(p) is the maximal ideal. �

Corollary 9.5. The spectrum of SHfin is the following topological space. We also
describe the surjective continuous map ρ := ρSHfin : Spc(SHfin)−→ Spec(Z).

(9.1)

P2,∞ P3,∞ · · · Pp,∞ · · ·

Spc(SHfin) =

ρSHfin

��

...
...

...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,1

VVVVVVVVVVVV P3,1

LLLL · · · Pp,1

mmmmmmm · · ·

SHfin
tor

Spec(Z) = 2Z
VVVVVVVVVVVVVV 3Z

MMMMMM · · · pZ

mmmmmmmm · · ·

(0)
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In the above picture, a line indicates that the higher prime is in the closure of the
lower one (specialization). We have more precisely :

(a) The preimage of the dense point of Spec(Z) has only one point, ρ−1(0) =

{SHfin
tor}, namely the subcategory of torsion spectra SHfin

tor = Ker(H∗(−,Q)).

(b) For each prime p ∈ P the preimage ρ−1(pZ) consists of the countable collec-

tion of Pp,n := q−1
p (Cp,n) where qp : SHfin → SHfin

(p) is the localization functor

and where 1 ≤ n ≤ ∞. When n < ∞, we have Pp,n = Ker(Kp,n ◦ qp) ={
x ∈ SHfin

∣∣Kp,n(qp(x)) = 0
}

, where Kp,n is the nth Morava K-theory

at p. Finally, Pp,∞ = Ker(qp) =
{
x ∈ SHfin

∣∣ qp(x) = 0 in SHfin
(p)

}
.

(c) SHfin
tor is the unique dense point of Spc(SHfin). For each p ∈ P and each

1 ≤ n ≤ ∞, the closure of {Pp,n} is {Pp,n} =
{
Pp,m

∣∣n ≤ m ≤ ∞
}

. The

closed points of Spc(SHfin) are exactly the Pp,∞ = Ker(qp) for all p ∈ P.

(d) For an object x ∈ SHfin, we have supp(x) = Spc(SHfin) if and only if x is

not torsion. When x ∈ SHfin
tor, then

supp(x) =
⋃
p∈P

s.t. qp(x) 6=0

{Pp,n(x,p)}

where the union involves only finitely many p ∈ P and where the integer
1 ≤ n(x, p) < ∞, sometimes called the “type” of qp(x), see [29, Def. 1.5.3],
is the smallest integer n such that qp(x) /∈ Pp,n.

(e) The proper non-empty closed subsets of Spc(SHfin) are all possible finite

unions of the following subsets : {Pp,n} =
{
Pp,m

∣∣n ≤ m ≤ ∞
}

for all
p ∈ P and all 1 ≤ n ≤ ∞.

Proof. By Thm. 7.13, the map ρ : Spc(SHfin) → Spec(Z) is surjective. So, to

describe the set Spc(SHfin), it suffices to describe the preimages ρ−1(0) and ρ−1(pZ)
for p ∈ P. Let us start with the preimage of the generic point (0) ∈ Spec(Z).
By Cor. 5.6 (c) for S = Z r (0), we see that the preimage of (0) is the image of

Spc(SHfin
(0)) in Spc(SHfin), that is, the image of Spec(q0 : SHfin → SHfin

(0)). But

SHfin
(0) = SHfin⊗Q is just Db(Q) and q0 : SHfin → SHfin⊗Q ' Db(Q) is (total)

rational homology (see [22, Thm. 8.1.7, p. 113]). Since Db(Q) has only {0} as prime

ideal, the preimage ρ−1(0) consists only of Ker(q0) = SHfin
tor. This proves (a).

Let now p ∈ P be a prime. By Cor. 5.6 (c) again but this time for S = Z r pZ,

we see that the fiber above pZ is the image in Spc(SHfin) of the part of Spc(SHfin
(p))

which maps to pZ(p) under ρ SHfin
(p)

. By the Hopkins-Smith Theorem 9.1 and by

Proposition 9.4, we know that this fiber is exactly the collection Cp,n for 1 ≤ n ≤ ∞,

whose images in SHfin are the announced Pp,n for 1 ≤ n ≤ ∞. This proves (b).

The inclusion Pp,n ⊂ SHfin
tor is immediate from SHfin

tor = q−1
p (Cp,0) and from the

inclusions Cp,n ⊂ Cp,0. Then (c) is easy to check from the definitions, recalling
that in any tensor triangulated category K, the closure of a point P ∈ Spc(K) is

described by {P} =
{
Q ∈ Spc(K)

∣∣Q ⊂ P
}

; see [1, Prop. 2.9].

Now, let x ∈ SHfin. If x is not torsion, i.e. x /∈ SHfin
tor, then for every p ∈ P and

n ∈ N ∪ {∞} we have x /∈ Pp,n as well, since Pp,n ⊂ SHfin
tor. Hence by Def. 1.3, we

have supp(x)
(def)
=

{
P
∣∣x /∈ P

}
= Spc(SHfin). On the other hand, if x is torsion,

then it is well-known that qp(x) 6= 0 for only finitely many p ∈ P. (By Prop. 3.7,



SPECTRA, SPECTRA, SPECTRA 29

there exists m ∈ Z, m 6= 0, such that m�x = 0 and then qp(x) = 0 for all p
prime to m.) On the other hand, since 0 = Cp,∞ = ∩n≥0Cp,n, when qp(x) 6= 0 we
have an integer n = n(x, p) ∈ N, n ≥ 1, such that qp(x) ∈ Cp,n−1 r Cp,n. Hence
x ∈ Pp,n(p)−1 r Pp,n(p). This proves (d).

Finally, by definition of the topology of Spc(K) (Def. 1.3) any closed subset is an
intersection of supports, supp(x), for x ∈ K. It is easy to check that they are the
announced ones. The only subtlety is the appearance of the closed point {Pp,∞}
which is not the support of any object but which is ∩n≥1{Pp,n}. �

Remark 9.6. We observe that Spc(SHfin) is not a noetherian topological space since,

for any p ∈ P, the non-empty family of closed subsets
{
{Pp,n}

∣∣ 0 ≤ n <∞} has no

minimal element, its intersection being {Pp,∞}. In particular, Spc(SHfin) cannot be

realized as the homogeneous spectrum Spech(R•) of a noetherian graded ring R•.

Proposition 9.7. The locally ringed space Spec(SHfin) is not a scheme. Nor is

any of the local ones Spec(SHfin
(p)), for any prime p.

Proof. Let p ∈ P be a prime. We know by Corollary 9.2 that SHfin
(p) is a local

category and its spectrum Spc(SHfin
(p)) is a local topological space. Hence, if the

ringed space Spec(SHfin
(p)) was a scheme, it would be the spectrum of the local ring

of global sections of its structure sheaf, which is just Z(p). Obviously, the spectrum

of SHfin
(p) is much bigger than Spec(Z(p)) = {(0), (p)}. The global result follows, as

a scheme remains a scheme locally. �

Remark 9.8. The category SHfin
(p) only has trivial invertible objects, so even the

twisted version of ρ•K cannot be injective. In conclusion, the triangular spectrum

Spc(K) considerably differs from the algebraic spectra Spec(RK) or Spech(R•K) in
general. This of course indicates that Spc(K) is a better, finer invariant than both

Spech(R•K) and Spec(RK).

10. Spectra of motivic spectra

For this section, let K = KA1 := (SHA1
F )c be the subcategory of compact ob-

jects in the Morel-Voevodsky stable A1-homotopy category SHA1
F over a field F ;

see [33, 24]. This category can be defined over a more general basis but the com-
putation of EndK(11), which we use below, is only performed for a field so far. The

category KA1 is connective in the sense of Definition 7.6, i.e. HomK(11,Σi(11)) = 0
for i > 0, see [33, Thm. 4.14], or [25, § 6], or [26, Cor. 4.3.3]. The beautiful compu-
tation of EndK(11) is due to Morel, see [25, Thm. 6.2.1] :

(10.1) EndKA1 (11) ∼= GW(F ) .

This holds at least when the field F is perfect and of characteristic different from
two, which we assume from now on. The ring GW(F ) is the Grothendieck-Witt ring
of quadratic forms over F , that is, the group completion of the abelian semi-ring of
isometry classes of non-degenerate quadratic forms over F , with orthogonal sum as
addition and tensor product as multiplication. This ring is classical and its quotient
W(F ) = GW(F )/h by the 2-dimensional hyperbolic plane h = 〈1,−1〉 is the even
more classical Witt ring ; see Lam [18]. Applying our Theorem 7.13, we get :
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Corollary 10.1. The map ρK : Spc(KA1)→ Spec(GW(F )) is surjective. �

Remark 10.2. The latter spectrum Spec(GW(F )) is well-known, at least for the
Witt group part. Let us remind the reader.

There is always a ring homomorphism, rank : GW(F ) → Z, induced by the
rank of quadratic forms. For instance, rank : GW(F ) ∼= Z is an isomorphism
for F quadratically closed, like F = C. On the other hand, if there exists an or-
dering α on F (equivalently, if −1 is not a sum of squares in F ) there is another
ring homomorphism, sgnα : GW(F ) → Z, induced by the signature of quadratic
forms (for a ∈ F×, we have sgnα(〈a〉) = 1 if a > 0 with respect to the order-
ing α and sgnα(〈a〉) = −1 otherwise). Using this, one can show for instance that
Spec(GW(R)) is equal to two copies of Spec(Z) attached together at the point 2Z.

More generally, the above surjective ring homomorphisms, rank : GW(F ) → Z
and sgnα : GW(F )→ Z, yield copies of Spec(Z) as closed subsets of Spec(GW(F )).

(a) For q ∈ Spec(Z) define the ideal qq := rank−1(q). The ideal I := q2 =
{
x ∈

GW(F )
∣∣ rank(x) is even

}
is called the fundamental ideal.

(b) For every ordering α on F (if any) and for every prime p ∈ Spec(Z), define
the ideal pα,p := (sgnα)−1(p).

One has I = pα,2 for every α and there is no other redundancy in the above list :

Spec(GW(F )) =
{
qq
∣∣ q ∈ Spec(Z)

}
∪

⋃
α ordering

{
pα,p

∣∣ p ∈ Spec(Z) r {2}
}
.

Here is a picture of Spec(GW(F )) :

(10.2)

� �
q5

�
qq

◦
q0}}}

AAA ���

IIIIIIIIIIIIIIIIIIIII �
q3

�
pα,5

�

� · · · �
pα,3

◦
pα,0

�
pα,p

· · · �

I

�

. . . · · · �

� · · · �
pα′,3

◦
pα′,0

�
pα′,p′

� ◦ � �
pα′,5

�

� �

The lines ◦ � and ◦ � indicate inclusions ◦ ⊂ �, that is, � is in the closure
of ◦. These are the only inclusions. The dotted part, beyond I, appears only
when F has at least one ordering otherwise Spec(GW(F )) = Spec(Z). This copy
of Spec(Z), coming via the rank, is the only one which is always present.

To prove this, first recall the spectrum of W(F ) = GW(F )/h where h = 〈1,−1〉,
from Harrison and Lorenz-Leicht [19]. It can be found in [18, §VIII.7, p. 277] and
corresponds exactly to the dotted part of Figure (10.2), including I. It just remains
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to describe Spec(GW(F )[1/h]) and this is immediate from GW(F )[1/h] ' Z[1/2].
The latter is induced by the rank and uses the equation 〈a〉 ⊗ h = 〈a,−a〉 =
〈1,−1〉 = h in GW(F ) (which holds in any characteristic). Note that the induced
topology on the subspace

{
pα,0

∣∣α ordering on F
}

is homeomorphic to the so-
called Harrison topology on the set of orderings ; see [18, Cor. 7.6, p. 279]. Being a
Boolean space, it is not discrete unless it is finite.

Remark 10.3. We now wonder what lives “above” this space Spec(GW(F )), that is,

how much bigger is the spectrum of our KA1 = (SHA1
F )c, compared to Spec(GW(F )).

The first answer is coming from SHfin. Let us assume that F ⊂ C has a complex
embedding. Then we have two ⊗-triangulated functors

SHfin−→KA1 Re→SHfin ,

the first one being the constant one and the second being complex realization.
Their composition is the identity. So, there is a copy of Spc(SHfin), as described

in Section 9, embedded inside Spc(KA1) via Spc(Re). On the level of central rings,
this corresponds to the copy of Spec(Z) in Spec(GW(F )) given by the rank. This
shows that the fibers of ρK are at least as big as in topology.

As should be expected, there is even more here than in topology :

Proposition 10.4. The split inclusion Spc(Re) : Spc(SHfin) → Spc(KA1) is not
surjective. Its image is contained in the proper closed subset supp(cone(η)), where
η ∈ HomK(11,G⊗−1

m ) is the algebraic Hopf map. This closed subset is also supp(P2).

Proof. The algebraic Hopf map is given by the natural map A2
F r{0} → P1

F and the
facts that A2

F r {0} ∼= Σ(G⊗2
m ) and P1

F
∼= Σ(Gm). See for instance Morel [25, § 6.1].

Its complex realization Re(η) is the topological Hopf map, which is ⊗-nilpotent.
However, Morel proves that the algebraic η is not ; see [25, Cor. 6.4.5, p. 258]. We
then use two general results :

(a) For any ⊗-triangulated functor F : K → L, if we denote by ϕ = Spc(F ) :
Spc(L) → Spc(K) the induced map and if x ∈ K, then supp(F (x)) =
ϕ−1(supp(x)) in Spc(L) ; see [1, Prop. 3.6]. Hence ϕ(supp(F (x))) ⊂ supp(x).

(b) By Theorem 2.15 above, for any ⊗-invertible object u ∈ K, a morphism
f : 11 → u is ⊗-nilpotent if and only if 〈cone(f)〉 = K. The latter is
equivalent to supp(cone(f)) = Spc(K) ; see [1, Cor. 2.5].

In our case, (b) and the nilpotence of Re(η) imply that supp(Re(cone(η))) =

Spc(SHfin). Hence by (a), we get Im(Spc(Re)) ⊂ supp(cone(η)), as announced.

The latter is smaller than Spc(KA1) by (b) and the non-nilpotence of the alge-
braic η. Finally cone(η) = P2 can be seen from the Mayer-Vietoris square

A2 − {0}
η

zzttttttttt

��

// A2 ' ∗

��
P1 P2 − {0}'oo // P2 .

(All schemes are pointed, e.g. at the points corresponding to [1 : 1 : 1] ∈ P2.) �

Remark 10.5. There is also a continuous map ρ•K : Spc(KA1)→ Spech(R•
KA1 ,u

) ob-

tained from § 5 with u = Gm as ⊗-invertible. Morel proves that R•
KA1 ,u

∼= KMW
• (F )

is the Milnor-Witt K-theory of the field F ; see more in [25, § 6, p. 251].
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Further determination of Spc
(
(SHA1

F )c
)
, including the question of the surjectivity

of this ρ•K, is a challenging endeavor in which the reader is welcome to engage.
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