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APPLICATIONS TO MODULAR REPRESENTATION THEORY

PAUL BALMER

Abstract. For a tensor triangulated Z/p-category K, with spectrum Spc(K),

we construct an injective group homomorphism Ȟ
1
(Spc(K), pGm)⊗ Z[1/p] ↪→

Pic(K) ⊗ Z[1/p], where Pic(K) is the group of ⊗-invertible objects of K. In

modular representation theory, we prove that this homomorphism induces a

rational isomorphism between the Picard group of the projective support va-
riety and the group of endotrivial representations.

Introduction

The final goal of this article is to prove Theorem 4.7, which establishes the
following link between algebraic geometry and modular representation theory.

Theorem. Let G be a finite group and k be a field of characteristic p > 0. Let T (G)
be the group of endotrivial kG-modules and VG = Proj(H•(G, k)) be the projective
support variety of G over k. Then gluing induces an isomorphism

(1) Pic(VG)⊗Z Q ∼−→T (G)⊗Z Q .

Moreover, this isomorphism maps OVG(d)⊗ 1
d to the kG-module Σ1(k) = Ω−1(k),

for any d > 0 such that Hd(G, k) contains a system of parameters (see Ex. 4.5).

There is a rich literature on endotrivial modules, justified by their fundamental
role in modular representation theory. For instance, Carlson and Thévenaz recently
classified them over p-groups in [15, 16]. It is worth mentioning that the rank of
T (G), i.e. the dimension of the right-hand Q-vector space T (G)⊗Q in (1), has been
described by Alperin [1]; see also Carlson [12] and Balmer-Benson-Carlson [6]. Let
us indicate to the non-expert reader that methods of algebraic geometry, and in
particular support varieties, are extensively used in modular representation theory,
including for the study of T (G). Despite all this, the above strong connection (1)
between line bundles on VG and endotrivial kG-modules seems to be new.

Beyond the isomorphism (1) itself, our technique for constructing it reaches much
further than modular representation theory. It relies on the concept of gluing, which
is very standard in algebraic geometry and which inspired the gluing construction
of Balmer-Favi [7] in tensor triangular geometry.
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Here, “tensor triangular geometry” refers to the study of tensor triangulated
categories K by geometric means. Initiated in [3], this theory got its proper foun-
dation in [4] with the construction of Spc(K), the spectrum of K, which is the
universal topological space in which one can define reasonable closed supports
supp(a) ⊂ Spc(K) for all objects a ∈ K; see Def. 1.3. This space Spc(K) can
be equipped with a sheaf of commutative rings OK making it a locally ringed space

Spec(K) =
(

Spc(K),OK

)
.

In algebraic geometry, a quasi-compact and quasi-separated scheme X (e.g. a
variety) can be reconstructed as the spectrum of its ⊗-triangulated category of

perfect complexes : Spec(Dperf(X)) ∼= X; see [4, Thm. 6.3 (a)] and [10, Thm. 9.5].
Modular representation theory studies representations of a finite group G over

a field k for which kG is not semisimple, meaning that there are non-projective
kG-modules (this is well-known to happen exactly when char(k) divides the order
of G). In this framework, there is a natural tensor triangulated category to consider,
namely the stable module category

kG – stab =
kG – mod

kG – proj
(quotient as additive categories)

which exactly measures the non semi-simplicity of kG. Remarkably, in this case, the

spectrum is isomorphic to the projective support variety : Spec(kG – stab) ∼= VG
def
=

Proj(H•(G, k)); see [4, Thm. 6.3 (b)]. This also holds for finite group schemes.
Other areas of mathematics are involved in tensor triangular geometry, i.e. pro-

duce important tensor triangulated categories, including stable homotopy theory,
noncommutative geometry, motivic theory, and more. In general though, the spec-
trum Spec(K) is simply a locally ringed space, not necessarily a scheme.

The first construction of this paper (Constr. 2.6) is a fraction of homomorphisms

(2) Ȟ
1
(Spc(K), pGm) Pic loc.tr.(K)

αoo � � // Pic(K)

for any tensor triangulated category K, where Pic(K) is the group of isomorphism
classes of ⊗-invertible objects of K, where Pic loc.tr.(K) is the subgroup of locally

trivial objects and finally, where Ȟ
1
(Spc(K), pGm) denotes the first Čech cohomol-

ogy group of Spc(K) with coefficients in the presheaf of units pGm (see Constr. 1.12

and Rem. 2.5). Note that Ȟ
1
(Spc(K), pGm) is the Picard group of Spec(K) when

pGm is a sheaf. The main result of the paper, Theorem 3.9, says that for K in char-
acteristic p, the map α is an isomorphism after inverting p. Its inverse is obtained
via the gluing construction of [7]. Putting things together we get the general result :

Theorem. Suppose that K is a tensor triangulated Z/p-category for some prime p.
Suppose K rigid (Def. 1.4) and idempotent complete (Def. 1.5) – which are mild
assumptions (Rem. 1.6). Then there exists a well-defined natural monomorphism

β : Ȟ
1
(Spc(K), pGm)⊗Z Z[1/p] ↪→ Pic(K)⊗Z Z[1/p] .

The article is organized as follows. Section 1 is a two-page review of basic tensor
triangular geometry. Section 2 reminds the reader of Picard groups, pGm-cocycles
and the gluing technique. Section 3 is devoted to the proof of the above general
theorem, which we apply to modular representation theory in Section 4. Observe
that the announced isomorphism Pic(VG)⊗Q ∼→ T (G)⊗Q of (1) is an application
of the triangular methods in the strong sense : The statement does not involve
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triangulated categories whereas the proof does. Finally, this result cannot hold
integrally, as we show in Example 4.9 for the quaternion group Q8.

Acknowledgments : I wish to thank Dave Benson, Jon Carlson, Eric Friedlander,
Nadia Mazza, Julia Pevtsova and Jacques Thévenaz for precious comments and
numerous references.

1. Elements of tensor triangular geometry

Definition 1.1. A tensor triangulated category (K,⊗, 11) is a triangulated cate-
gory K (see Verdier [23, § II.1]) equipped with a symmetric monoidal structure (see
Mac Lane [20, §XI.1]) ⊗ : K × K−→K with unit 11 ∈ K. The tensor ⊗ is also
assumed exact in each variable. See more in Keller–Neeman [19].

Examples 1.2. Here are two important examples (details can be found in [5, § 4]) :

(a) For X a quasi-compact and quasi-separated scheme, e.g. X (topologically)

noetherian, take K = Dperf(X).

(b) For G a finite group and k a field, take K = Db(kG – mod) or its quotient

Db(kG – mod)/Db(kG – proj) ∼= kG – stab. See more in § 4 below.

Definition 1.3. In [4], we define the spectrum, Spc(K), of a tensor triangulated
category K as the set of proper thick triangulated ⊗-ideals P ( K which are prime,
i.e. such that a ⊗ b ∈ P implies a ∈ P or b ∈ P. We define for every object a ∈ K

an open subset U(a) :=
{
P ∈ Spc(K)

∣∣ a ∈ P
}

. These form a basis of the topology
on Spc(K). This space is quasi-compact and quasi-separated, i.e. it has a basis of
quasi-compact open subsets, namely precisely {U(a)}a∈K ; see [4, Prop. 2.14 (a)].
The support of an object a ∈ K is the closed complement of U(a) :

supp(a) :=
{
P ∈ Spc(K)

∣∣ a /∈ P
}
⊂ Spc(K) .

One has : supp(0) = ∅, supp(11) = Spc(K), supp(a ⊕ b) = supp(a) ∪ supp(b),
supp(Σa) = supp(a) for Σ : K → K the suspension, supp(c) ⊂ supp(a) ∪ supp(b)
for every exact triangle a→ b→ c→ Σa and supp(a⊗ b) = supp(a) ∩ supp(b).

Definition 1.4. We say that the tensor triangulated category is rigid (in [5] and
in [7], we said strongly closed) if there is a functor D : Kop → K such that

HomK(a⊗ b, c) ' HomK(a,D(b)⊗ c) .
Definition 1.5. We say that an additive category K is idempotent complete if for
any idempotent e = e2 : a → a in K there exists a decomposition of the object
a = a1 ⊕ a2 such that e = ( 1 0

0 0 ). It is easy to idempotent complete any additive

category K
ι
↪→ K̃ and K̃ is a (rigid) tensor triangulated category if K was; see [8].

Remark 1.6. Assuming K rigid and idempotent complete is a rather mild condition
for applications : It usually holds for K the category of compact objects in big
enough ⊗-triangulated categories; see [5, Rem. 2.2]. These assumptions are used
for the following general version of a theorem of Carlson in modular representation
theory.

Theorem 1.7 ([5, Thm. 2.11]). Let K be a rigid, idempotent complete, tensor
triangulated category. Let a ∈ K be an object such that supp(a) = Y1 ∪ Y2 with Y1
and Y2 disjoint closed subsets with quasi-compact open complements Spc(K) r Yi.
Then there exists a decomposition a ∼= a1 ⊕ a2 with supp(ai) = Yi for i = 1, 2.
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Notation 1.8. The commutative ring EndK(11) acts centrally on any morphism
of K as follows. Let f : 11→ 11 and let ϕ : a→ b in K, one can define f · ϕ : a→ b
to be the composition from left to right in the commutative diagram :

(3)

11⊗ a
f⊗ϕ //

∼=
��

11⊗ b ∼=
**TTTTTTT

∼=
��

a

∼= 44jjjjjjj

∼= **TTTTTTT b .

a⊗ 11
ϕ⊗f // b⊗ 11

∼=

44jjjjjjj

The left and right triangles commute by axioms of symmetric monoidal cate-
gories [20, XI.1.(4), p. 252], the middle square by naturality of the switch isomor-
phism. Plugging a = b = 11 in (3) shows that f · g and f ◦ g agree on EndK(11)
and also that EndK(11) is commutative. It follows from the axioms of symmetric
monoidal categories that composition and ⊗ are EndK(11)-bilinear. So, for two
morphisms ϕi : ai → bi, i = 1, 2, and for f ∈ EndK(11), we have

(4) (f · ϕ1)⊗ ϕ2 = f · (ϕ1 ⊗ ϕ2) = ϕ1 ⊗ (f · ϕ2) : a1 ⊗ a2−→ b1 ⊗ b2 .

Construction 1.9. Recall the notion of Verdier localization of triangulated cate-
gories; see [23, § II.2]. Consider a thick triangulated subcategory J ⊂ K. “Thick”
means that for a, b ∈ K, if a⊕ b ∈ J then a, b ∈ J. Then K/J has the same objects
as K but new morphisms HomK/J(a, b) given by equivalence classes of fractions

a c
soo f // b ,

where cone(s) ∈ J, and where two fractions are equivalent if they admit a common
amplification. When K is a (rigid) tensor triangulated category and J is a ⊗-ideal,
K/J inherits an obvious structure of (rigid) tensor triangulated category, such that
the localization functor q : K � K/J is ⊗-triangulated; see [5, Prop. 2.15 (ii)]. For
us, the important case of Verdier localization is when J is equal to

KZ :=
{
a ∈ K

∣∣ supp(a) ⊂ Z
}

for a closed Z ⊂ Spc(K), assuming that its open complement U := Spc(K) r Z is
quasi-compact. We then define K(U) to be the idempotent completion of the cor-
responding Verdier localization. We have the commutative diagram, defining resU :

(5)
K

q %% %%KKKKKK
resU //

K̃/KZ =: K(U) .

K/KZ

( � ι

55kkkkkkk

The importance of the idempotent completion comes from Theorem 1.7 that we
need to apply to K(U) as well. Indeed K(U) still is a tensor triangulated category
with 11K(U) = resU (11K) and its spectrum is Spc(K(U)) = U ; see [7, Prop. 1.11].

Remark 1.10. This definition of K(U) originates in Thomason’s theorem saying that
for a quasi-compact open subset U ⊂ X of a quasi-compact and quasi-separated
scheme X, the above construction (5) applied to K = Dperf(X) gives K(U) =

Dperf(U); see Thomason-Trobaugh [22, § 5.2], as also explained in [3, Thm. 2.13].

Convention 1.11. For a quasi-compact open U ⊂ Spc(K), we use the shorthand
“on U” to mean “in K(U), after applying the appropriate functor resU”.
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Construction 1.12. Construction 1.9 can be used to define a presheaf of commu-
tative rings pOK on Spc(K), setting for every quasi-compact open U ⊂ Spc(K)

(6) pOK(U) := EndK(U)(11) .

The sheafification of pOK defines the structure sheaf OK and gives us the ringed
space Spec(K) := (Spc(K),OK). There is a sub-presheaf pGm of pOK defined as
the automorphisms of the unit :

(7) pGm(U) := AutK(U)(11) ⊂ pOK(U)

for U ⊂ Spc(K) quasi-compact open.

2. invertible objects and cocycles

As above, K is a tensor triangulated category, assumed rigid (Def. 1.4) and idem-
potent complete (Def. 1.5). Recall Convention 1.11.

Definition 2.1. An object x ∈ K is ⊗-invertible if there exists y ∈ K such that
x ⊗ y ' 11. Since K is rigid, this is equivalent to the obvious (evaluation) map
x⊗D(x)→ 11 being an isomorphism, i.e. we have y ' D(x). We denote by Pic(K)
the abelian group of isomorphism classes [x] of ⊗-invertible objects, with addition
[x] + [y] = [x⊗ y] and zero 0 = [11].

Remark 2.2. An object x ∈ K which is locally ⊗-invertible, in the sense that Spc(K)
can be covered by open subsets U such that x is ⊗-invertible on U , is necessarily
⊗-invertible in K. Indeed, the natural map x⊗D(x)→ 11 is a local isomorphism,
hence an isomorphism; see [7, Lem. 6.2].

Definition 2.3. We say that a ⊗-invertible object x ∈ K is locally trivial if Spc(K)
can be covered by quasi-compact open subsets U such that x ' 11 on U . (We call
such a cover trivializing.) This defines a subgroup of Pic(K), that we denote

Pic loc.tr.(K) :=
{

[x] ∈ Pic(K)
∣∣x is locally trivial

}
⊂ Pic(K) .

Example 2.4. For X a scheme, we have Pic loc.tr.(D
perf(X)) = Pic(X). Indeed,

Pic(Dperf(X)) = Pic(X) ⊕ Zm, where m is the number of connected components
of X and where Zm comes from shifting complexes; see [7, Prop. 6.4].

Remark 2.5. We now use Čech cohomology of the topological space Spc(K) with co-

efficients in the presheaf pGm; see 1.12. We only use the first group Ȟ
1
(Spc(K), pGm),

so let us specifically recall that one. Since the space Spc(K) is quasi-separated
(see Def. 1.3), we only consider finite covers by quasi-compact opens Spc(K) =
U1 ∪ . . . ∪ Un. As always, we write

(8) Ui1i2...ir := Ui1 ∩ Ui2 ∩ · · · ∩ Uir for any 1 ≤ i1 , . . . , ir ≤ n.
A “1-cocycle” for pGm over U∗ is the data of σji ∈ pGm(Uij) for all 1 ≤ i, j ≤ n
satisfying the condition σkj · σji = σki in pGm(Uijk). These cocycles form an
abelian group under multiplication. For a collection τi ∈ pGm(Ui) we define the “1-
boundary” dτ by dτji = τjτ

−1
i . The quotient of the abelian group of 1-cocycles by

the subgroup of 1-boundaries is Ȟ
1
(U∗, pGm). For any refinement V∗ of U∗, there

is an obvious map Ȟ
1
(U∗, pGm) → Ȟ

1
(V∗, pGm). One defines the abelian group

Ȟ
1
(Spc(K), pGm) as the colimit of those groups.
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Construction 2.6. There exists, as usual, a group homomorphism

α : Pic loc.tr.(K)→ Ȟ
1
(Spc(K), pGm) ,

natural in K and defined as follows. For a class ` ∈ Pic loc.tr.(K), choose some x ∈ `.
Choose a trivializing cover U∗ = (Ui)

n
i=1 of Spc(K) by quasi-compact open subsets

and choose isomorphisms ξi : x
∼→ 11 on Ui. Define σ = σ(x, ξ) by σji = ξj ◦ ξ−1i for

all 1 ≤ i, j ≤ n. This defines an element σji ∈ pGm(Ui∩Uj); see (7). The class of the

cocycle σ = σ(x, ξ) in Ȟ
1
(U∗, pGm) is independent of the choice of the isomorphisms

ξi : x
∼→ 11, for other choices ξ′i : x

∼→ 11 give τi := ξ′i ξ
−1
i ∈ pGm(Ui) such that

σ(x, ξ′) · σ(x, ξ)−1 = dτ ; see 1.8 if necessary. Hence [σ(x, ξ′)]− [σ(x, ξ)] = [dτ ] = 0

in Ȟ
1
(U∗, pGm). Similarly, this class [σ(x)] ∈ Ȟ

1
(U∗, pGm) is independent of the

chosen representative x ∈ `. Indeed, for an isomorphism ϕ : y
∼→ x, by the above,

one can compute the class of σ(y) by using the trivialization ξ∗ ◦ ϕ, which gives

the same cocycle ξj ϕ (ξi ϕ)−1 = ξj ξ
−1
i . Then α(`) ∈ Ȟ

1
(Spc(K), pGm) is defined

as the image of our class [σ] ∈ Ȟ
1
(U∗, pGm) in the colimit :

Ȟ
1
(U∗, pGm) −→ colim

U∗
Ȟ

1
(U∗, pGm) = Ȟ

1
(Spc(K), pGm)

[σ] 7−→ α(`) .

Sending [σ] in the colimit over the open covers U∗ (under refinement), makes the
construction independent of the choice of the trivializing cover U∗.

As a partial converse to the above, we now recall the gluing technique of [7].

Definition 2.7. A gluing data is a triple (U∗, x∗, σ∗∗), where U∗ = (Ui)
n
i=1 is a

finite open cover of the spectrum Spc(K) by quasi-compact open subsets, where
x∗ = (xi)

n
i=1 is a collection of objects xi ∈ K(Ui) on each Ui and finally σ∗∗ =

(σij)1≤i,j≤n is a collection of isomorphisms σji : xi
∼→ xj on Uij (see (8) above)

satisfying the cocycle condition : σkj ◦ σji = σki on Uijk for every 1 ≤ i, j, k ≤ n.
We call gluing of the data (U∗, x∗, σ∗∗) a pair (x, ξ∗) consisting of an object x ∈ K

and a collection ξ∗ = (ξi)
n
i=1 of isomorphisms ξi : x

∼→ xi on Ui compatible with σ∗∗,
i.e. such that σji ◦ ξi = ξj on Uij for every 1 ≤ i, j ≤ n :

(9)

xi

σji

��
x

ξi 66mmmmmm

ξj
((QQQQQQ

xj .

We alternatively say that the gluing data (U∗, x∗, σ∗∗) admits a solution (x, ξ∗).
Suppose that (x, ξ∗) and (y, η∗) are two gluings for the same data (U∗, x∗, σ∗∗).

An isomorphism of gluings f : (x, ξ∗)
∼→ (y, η∗) is an isomorphism f : x

∼→ y in K,
such that ηi ◦ f = ξi on Ui for all 1 ≤ i ≤ n.

Here, we shall only glue ⊗-invertible objects xi, mostly xi = 11 for all i although
we need other xi’s for induction arguments. In this situation, a gluing x ∈ K as
above must be ⊗-invertible in K as well; see Remark 2.2. Using Theorem 1.7, one
can prove :

Theorem 2.8 (Balmer-Favi [7, Cor. 5.10]). Let K be a rigid (Def. 1.4) and idempo-
tent complete (Def. 1.5) ⊗-triangulated category. Then the gluing problem for two
open subsets admits a solution, unique up to possibly non-unique isomorphism.
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Remark 2.9. The non-uniqueness of the isomorphism in Theorem 2.8 might sound
secondary but it has consequences for the gluing of three pieces, i.e. when Spc(K) =
U1 ∪ U2 ∪ U3 and we want to glue three objects. What happens is that the gluing
still exists but is not unique up to isomorphism anymore. Worst, with four pieces
or more, the gluing simply does not exist in general. In the next section, we explain
how to treat this problem in positive characteristic.

3. Gluing in characteristic p, up to p-th powers

As before, we assume for the whole section that K is a rigid (Def. 1.4), idempotent
complete (Def. 1.5), tensor triangulated category. We further assume that p = 0 in
K for some prime number p, that is, K is a Z/p-category. This holds of course in

modular representation theory, or for K = Dperf(X) when X is a scheme over Z/p.
We consider an open cover of the spectrum by quasi-compact open subsets

(10) Spc(K) = U1 ∪ · · · ∪ Un
and we denote by Zi = Spc(K) r Ui their closed complements. Recall Conven-
tion 1.11. We start with a result which does not use p = 0 in K.

Proposition 3.1. If a morphism f : a→ b in K vanishes on each Ui then f⊗n = 0
in K, as a morphism from the object a⊗n := a⊗ · · · ⊗ a (n factors) to b⊗n.

Proof. This follows from [4, Prop. 2.21] but we sketch it for the reader’s conve-
nience : Since ι : K/KZi

↪→ K(Ui) is fully faithful, we have f = 0 in K/KZi
. By

a general fact of Verdier localization (see [4, Lem. 2.22] if necessary), f factors via
an object ci ∈ KZi . Since ∩i Zi = ∅, the product c1 ⊗ · · · ⊗ cn has empty support,
hence vanishes ([5, Cor. 2.5]). So, f⊗n factors via c1 ⊗ · · · ⊗ cn = 0. �

Remark 3.2. We cannot deduce that if f = g on each Ui then f⊗r = g⊗r for r big
enough. Set for instance f = ida⊕b and g = ( 1 0

h 1 ), for h : a → b locally zero but
not zero. Then g⊗r 6= id for all r ≥ 1. Hence the importance of the next result.

Lemma 3.3. Let x, y ∈ K be ⊗-invertible objects (Def. 2.1) and let ϕ,ψ : x
∼→ y

be two isomorphisms such that ϕ = ψ on Ui for all 1 ≤ i ≤ n. Then ϕ⊗p
r

= ψ⊗p
r

:
x⊗p

r ∼→ y⊗p
r

for r ≥ 0 large enough (pr ≥ n will do).

Proof. For a ⊗-invertible object y, the functor − ⊗ y : K → K is an equivalence.
We have in particular an isomorphism EndK(11)

∼→ EndK(y), given by f 7→ f · idy ,

using Notation 1.8. Therefore, the automorphism ϕ ◦ ψ−1 : y
∼→ y is of the form

f · idy for some f : 11
∼→ 11, that we can write f = 1 +h, if we wish. The hypothesis

ϕ = ψ on each Ui implies that h is zero on each Ui. So h⊗n = 0 by Proposition 3.1.
Now, on the ring EndK(11), composition and ⊗ coincide (see 1.8), hence hn = 0.

In short, ϕ = (1 + h) · ψ for h ∈ EndK(11) such that hp
r

= 0 for r >> 0. Then

ϕ⊗p
r

=
(
(1 + h) · ψ

)⊗pr (4)
= (1 + h)p

r

· ψ⊗p
r

= ψ⊗p
r

,

since (1 + h)p
r

= 1 + hp
r

as p = 0 in the ring EndK(11), by assumption. �

Lemma 3.4. Let x, y ∈ K be ⊗-invertible objects and let ϕi : x
∼→ y be isomor-

phisms on Ui such that ϕi = ϕj on Uij. Then there exist r ≥ 0 large enough and

an isomorphism ϕ : x⊗p
r ∼→ y⊗p

r

such that ϕ = (ϕi)
⊗pr on each Ui.
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Proof. It is a result of [7] that for a cover by two open subsets Spc(K) = U ∪ V
there exists a Mayer-Vietoris long exact sequence, which says in particular that for
every objects a, b ∈ K the following sequence is exact in the middle :

(11) (a, b)
( res
res )

// HomK(U)(a, b)⊕HomK(V )(a, b)
(− res res )// HomK(U∩V )(a, b)

In general, the left-hand map is not injective but we circumvent this via Lemma 3.3.
The proof proceeds by induction on the number n of open in (10). The case n = 1
is trivial, so let us assume n ≥ 2. Let V = U2 ∪ · · · ∪ Un. By induction hypothesis,

there exist r ≥ 0 and an isomorphism ψ : x⊗p
r ∼→ y⊗p

r

on V such that ψ = ϕ⊗p
r

i on

each Ui, for 2 ≤ i ≤ n. We have U1 ∩ V = U12 ∪ · · · ∪U1n and the morphisms ϕ⊗p
r

1

and ψ agree on each little piece U1i for 2 ≤ i ≤ n by construction of ψ and since ϕ1

and ϕi agree on U1i. Applying Lemma 3.3 to the category K(U1 ∩ V ), we see that

there exists s ≥ 1 such that ϕ⊗p
r+s

1 = ψ⊗p
s

on U1 ∩ V . By Mayer-Vietoris (11),

applied to U = U1 and to our V , there exists a morphism ϕ : x⊗p
r+s → y⊗p

r+s

in K such that ϕ = ϕ⊗p
r+s

1 on U1 and such that ϕ = ψ⊗p
s

on V , which implies

ϕ = ψ⊗p
s

= ϕ⊗p
r+s

i on each Ui, for 2 ≤ i ≤ n. This morphism ϕ is locally an
isomorphism so it is an isomorphism. �

Remark 3.5. Let (U∗, x∗, σ∗∗) and (U∗, x
′
∗, σ
′
∗∗) be gluing data as in Definition 2.7 for

the same open cover U∗. Then we can define a new gluing data (U∗, x∗⊗x′∗, σ∗∗⊗σ′∗∗)
with objects xi ⊗ x′i on Ui and isomorphisms σji ⊗ σ′ji : xi ⊗ x′i

∼→ xj ⊗ x′j on Uij .
Similarly, if (x, ξ∗) and (x′, ξ′∗) are gluings of the original data, respectively, then
(x ⊗ x′, ξ∗ ⊗ ξ′∗) is a gluing of the new one. In particular, for r ≥ 1, if (x, ξ∗) is a
gluing of (U∗, x∗, σ∗∗) then (x⊗r, ξ⊗r∗ ) is a gluing of (U∗, x

⊗r
∗ , σ⊗r∗∗ ).

Proposition 3.6 (Uniqueness of gluing up to pth powers). Suppose that (x, ξ∗) and
(y, η∗) are two gluings for the same data (U∗, x∗, σ∗∗). Suppose that the objects xi
are ⊗-invertible in K(Ui). Then there exist r ≥ 0 and an isomorphism of gluings

(x⊗p
r

, ξ⊗p
r

∗ )
∼→ (y⊗p

r

, η⊗p
r

∗ ) for the data (U∗, x
⊗pr
∗ , σ⊗p

r

∗∗ ).

Proof. The isomorphisms ϕi := η−1i ◦ ξi : x
∼−→ y on Ui agree on Uij since

xi

σji

��
x

ξi 66mmmmmm

ξj ((PPPPPP y

ηihhQQQQQQ

ηjwwnnnnnn

xj

commutes on Uij by definition, see (9). We conclude by Lemma 3.4. �

Proposition 3.7 (Existence of gluing up to pth powers). Let (U∗, x∗, σ∗∗) be a
gluing data (Def. 2.7). Suppose that the objects xi are ⊗-invertible in K(Ui). Then
there exists r ≥ 0 such that the data (U∗, x

⊗pr
∗ , σ⊗p

r

∗∗ ) admits a gluing.

Proof. The proof goes by induction on the number n of open in (10) as above. The
case n = 1 is trivial, so let us assume n ≥ 2. Consider as before V = U2 ∪ · · · ∪ Un
and let U ′∗ = (Ui)

n
i=2. By induction hypothesis, there exists r ≥ 0 such that the data

(U ′∗, x
⊗pr
∗ , σ⊗p

r

∗∗ ) admits a gluing, say, (y, η∗) on V . In order to apply Theorem 2.8 to

the cover Spc(K) = U1∪V and to x⊗p
r

1 ∈ K(U1) and y ∈ K(V ), we would need them

to be isomorphic on U1 ∩ V , which fails a priori. Nevertheless, both (x⊗p
r

1 , σ⊗p
r

∗1 )
and (y, η∗) are gluings on U1 ∩ V for the same gluing data (U ′′∗ , x

⊗pr
∗ , σ⊗p

r

∗∗ ) where
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U ′′∗ = (U1i)
n
i=2. By Proposition 3.6 applied to the category K(U1 ∩ V ), there exist

s ≥ 0 and an isomorphism ψ : x⊗p
r+s

1
∼→ y⊗p

s

on U1 ∩ V compatible with σ⊗p
r+s

i1

and η⊗p
s

i on U1i for 2 ≤ i ≤ n. We conclude by Theorem 2.8 that there exist x ∈ K

and isomorphisms ξ1 : x
∼→ x⊗p

r+s

1 on U1 and ξ′ : x
∼→ y⊗p

s

on V compatible with ψ

on U1∩V . We deduce an isomorphism ξi := η⊗p
s

i ◦ resUi
(ξ′) : x

∼→ x⊗p
r+s

i on Ui for

all 2 ≤ i ≤ n. We have the wanted gluing (x, ξ∗) of the data (U∗, x
⊗pr+s

∗ , σ⊗p
r+s

∗∗ ).

Indeed, the remaining compatibility between ξ∗ and σ⊗p
r+s

∗∗ is visible in the following
diagram of isomorphisms :

x⊗p
r+s

1

ψ(U1∩V )

��

σ⊗pr+s

i1(U1i)

��

x

ξ1

(U1)

//

ξ′

(V )
//

ξj
(Uj) ((RRRRRRRRRRRRRRRRRR

ξi(Ui)

77

y⊗p
s

η⊗ps

j
(Uj)

��

η⊗ps

i

(Ui)

$$
x⊗p

r+s

j

σ⊗pr+s

ij

(Uij)
// x⊗p

r+s

i

for 2 ≤ i, j ≤ n.

Under each isomorphism, we indicate between parentheses on which open it is
defined. Each triangle commutes where all its edges are defined. �

Proposition 3.8 (Vanishing on boundaries up to pth powers). Suppose that (x, ξ∗)
is a gluing of a data (U∗, 11∗, σ∗∗), i.e. every xi = 11. Suppose that [σ∗∗] = 0 in

Ȟ
1
(U∗, pGm). Then there exist r ≥ 0 and an isomorphism x⊗p

r ∼→ 11 in K.

Proof. There exists τ∗ ∈ AutK(U∗)(11) such that σji = (dτ∗)ji = τj τ
−1
i on Uij for

all 1 ≤ i, j ≤ n. Define ϕi := τ−1i ξi : x
∼→ 11 on each Ui. The above relation and

the compatibility of ξ∗ with σ∗∗ in (9) imply that ϕi = ϕj on Uij . By Lemma 3.4,

some p-th power of these ϕi glue into an isomorphism ϕ : x⊗p
r ∼→ 11⊗p

r

= 11. �

Putting things together, we have our central result :

Theorem 3.9. Let K be a rigid, idempotent complete, tensor triangulated Z/p-
category. Let U∗ = (Ui)

n
i=1 be an open cover of Spc(K) as in (10). Let σij ∈

AutK(Uij)(11) be a cocycle : σkj · σji = σki on Uijk for all 1 ≤ i, j, k ≤ n. Then

there exists r ≥ 0 such that the data (U∗, 11∗, σ
⊗pr
∗∗ ) admits a gluing x(r) ∈ K. Two

such gluings x1(r1) and x2(r2) have isomorphic p-th powers; more precisely, there

exists r3 ≥ 0 with x1(r1)⊗p
r2+r3 ' x2(r2)⊗p

r1+r3
. In particular, the following class

in Pic loc.tr.(K)⊗Z Z[1/p] ⊂ Pic(K)⊗Z Z[1/p] is independent of the choice of r :

β(U∗;σ∗∗) := [x(r)]⊗ 1

pr
.

This defines an isomorphism β : Ȟ
1
(Spc(K), pGm) ⊗Z Z[1/p]

∼→ Pic loc.tr.(K) ⊗Z
Z[1/p] natural in K and inverse to the homomorphism α⊗ idZ[1/p] from Construc-
tion 2.6.

Proof. Existence of the gluing x(r) is Proposition 3.7. Uniqueness is Proposi-
tion 3.6 applied to x1(r1)⊗p

r2
and x2(r2)⊗p

r1
which are two gluings of the same
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data (U∗, 11∗, σ
⊗pr1+r2

∗∗ ). Hence β(U∗, σ∗∗) ∈ Pic loc.tr.(K) ⊗ Z[1/p] is well-defined.
It is multiplicative in the cocycle by Remark 3.5 and vanishes on boundaries by

Proposition 3.8. Hence we have a well-defined homomorphism Ȟ
1
(U∗, pGm) ⊗

Z[1/p]−→Pic loc.tr.(K) ⊗ Z[1/p] for all open cover U∗ of Spc(K). This is obvi-
ously compatible with the refinement of open covers (a solution of the gluing for U∗
gives a solution for any refinement). So, we get the announced homomorphism β.
It is straightforward to check that β is, by its very construction, a two-sided inverse

of α⊗ id : Pic loc.tr.(K)⊗ Z[1/p]−→ Ȟ
1
(Spc(K), pGm)⊗ Z[1/p]. �

4. Applications to modular representation theory

Let G be a finite group and VG = VG(k) = Proj(H•(G, k)) its projective support
variety over a field k, whose characteristic p divides the order of G. Let K =
kG – stab be the stable category, which has finitely generated kG-modules as objects
and, as morphisms, kG-homomorphisms modulo those which factor via a projective.
The tensor product of two kG-modules is M ⊗k N with diagonal action of G. This
K is a rigid (Def. 1.4 with usual dual D(M) = M∗), idempotent complete (Def. 1.5),
⊗-triangulated Z/p-category. See more in Carlson [11] or Benson [9].

A kG-moduleM is⊗-invertible in kG – stab (see Def. 2.1) if and only ifM⊗M∗ '
k in kG – stab, which is equivalent to Endk(M) ' k ⊕ (proj) in kG – mod. The
latter has been dubbed endotrivial in the literature. So, the group T (G) of stable
isomorphism classes of endotrivial modules is nothing but Pic(kG – stab).

By [4, Thm. 6.3 (b)], we have an isomorphism Spec(kG – stab) ' VG(k), natural
in G (see Rem. 4.3), and which is compatible with the support varieties of modules,
namely for every finitely generated kG-module M , we have supp(M) = VG(M).

Remark 4.1. At this stage, we can make sense of what should be “the category
kG – stab on some open U ⊂ VG”, by means of triangular geometry; see Section 1.
(Note that VG is noetherian, so all open subsets are quasi-compact.) The answer is
the ⊗-triangulated category K(U) for K = kG – stab, as in Construction 1.9. We
also have the restriction functor resU : kG – stab → K(U). By Remark 1.10, in
algebraic geometry the new category K(U) has the same nature as the original K.
This is far from being true in modular representation theory. We shall not use the
following result. It is only stated here to emphasize the gain in flexibility provided
by the use of tensor triangular geometry in modular representation theory.

Proposition 4.2. Let U ( VG = Spc(K) be a proper, non-empty open and consider
K(U) as in Construction 1.9. Then K(U) cannot be equivalent to kG′ – stab, as
tensor triangulated category, for any finite group G′.

Proof. Suppose that K(U) ' kG′ – stab, as a ⊗-triangulated category, then U =
Spc(K(U)) ' Spc(kG′ – stab) = VG′ = Proj(H•(G′, k)) is a projective variety, hence
a proper scheme over k. Therefore U must be closed in VG, where it is also open.
This would imply that VG is disconnected, which is wrong. (Simply apply Carlson’s
Theorem, see Thm. 1.7, to the indecomposable a = 11 = k whose support is VG.) �

Remark 4.3. Given a subgroup H ⊂ G, restriction defines a ⊗-triangulated functor
resG,H : kG – stab → kH – stab. This induces a group homomorphism resG,H :
T (G) → T (H) and a morphism of schemes res∗G,H : VH → VG. Note finally that
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Pic(−) is contravariant on schemes, so resG,H also induces resG,H : Pic(VG) →
Pic(VH). This is what we mean here by naturality in the group G, not more.

Since here Pic(VG) ∼= Ȟ
1
(VG, pGm), Construction 2.6 and Theorem 3.9 imply :

Corollary 4.4. There exists a fraction of homomorphisms, natural in G (Rem. 4.3)

(12) Pic(VG) Pic loc.tr.(kG – stab)
αoo � � // T (G)

and α becomes an isomorphism after inverting p on these abelian groups. The
resulting natural injective homomorphism β : Pic(VG)⊗Z Z[1/p] ↪→ T (G)⊗Z Z[1/p]
can be described by the gluing of pGm-cocycles as in Section 3. �

Example 4.5. By the Evens-Venkov Theorem, the k-algebra H•(G, k) is finitely

generated. So, there exist d ≥ 1 and ζ1, . . . , ζn ∈ Hd(G, k) such that VG =
U1 ∪ · · · ∪ Un where Ui := D(ζi) =

{
p ∈ Proj(H•(G, k))

∣∣ ζi /∈ p
}

are princi-
pal open subsets of VG. We refer to such ζ1, . . . , ζn as a system of parameters
in Hd(G, k). The cone of each ζi : Ωd(k) → k is the suspension of Carlson’s
Lζi module, which has support V (ζi) = VG rD(ζi), see [9, Prop. II.5.9.1, p. 186].
Hence ζi : Ωd(k)→ k is an isomorphism on D(ζi) in the sense of triangular geom-
etry, see Construction 1.9. This proves that Ωd(k) is locally trivial, i.e. defines a
class [Ωd(k)] ∈ Pic loc.tr.(K); see Def. 2.3. By Construction 2.6, the cocycle σ associ-

ated to [Ωd(k)] under the homomorphism α : Pic loc.tr.(K)→ Ȟ
1
(U∗, pGm) is simply

σji = ζj ◦ ζ−1i ∈ AutK(Uij)(11). On the other hand, it is easy to check that this class

[σ] ∈ Ȟ
1
(VG, pGm) ∼= Pic(VG) corresponds to the line bundle OVG(−d) over VG.

Indeed, each ζi ∈ Hd(G, k) defines a global homomorphism OVG(−d) → OVG (see
Hartshorne [18, § II.5, p. 116]) which is an isomorphism on Ui = D(ζi). We have
the commutative diagram

(13)

OVG

σji=ζj ζ
−1
i

��
OVG(−d)

ζi

'
55jjjjjj

ζj

'
))TTTTTT

OVG
of sheaves on Uij = D(ζi ζj), analogous to (9) in K(Uij). This shows that the
sheaf OVG(−d) is the gluing corresponding to our cocycle σ as announced; see [18,
Ex. II.1.22]. This proves that α([Ωd(k)]) = [OVG(−d)] for that specific integer d ≥ 1.
Hence, computing in T (G)⊗Q, we obtain

(β⊗idQ)
(
[OVG(−d)]⊗ 1

d

)
= (α⊗idQ)−1

(
[OVG(−d)]⊗ 1

d

)
= [Ωd(k)]⊗ 1

d
= [Ω1(k)]⊗1 .

Remark 4.6. Note that the OVG -module OVG(m) is not necessarily a line bundle for
all m ∈ Z. This comes from H•(G, k) not being generated by H1(G, k). Therefore,
we cannot replace the above OVG(−d)⊗ 1

d by OVG(−1)⊗ 1, a priori.

Theorem 4.7. Let G be a finite group and k be a field of characteristic p. Then the
gluing map β of Corollary 4.4 induces an isomorphism, natural in G (see Rem. 4.3),

β : Pic(VG)⊗Q ∼−→T (G)⊗Q .

Moreover, this isomorphism maps [OVG(−d)]⊗ 1
d to [Ω(k)]⊗1 for every d ≥ 1 such

that Hd(G, k) contains a system of parameters (see Ex. 4.5).
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Proof. By Corollary 4.4, it suffices to prove that the subgroup Pic loc.tr.(kG – stab)
has finite index in T (G). In [6, § 10], we proved that T (G) admits a subgroup of
finite index generated by endotrivial modules X which are the result of gluing two
copies of k over a cover of VG by two open pieces. These modules X belong to the
subgroup Pic loc.tr.(kG – stab) by definition (Def. 2.3), hence the result. �

Remark 4.8. For experts, we outline the construction, given in [6], of enough locally
trivial modules to prove that Pic loc.tr.(kG – stab) has finite index in T (G). When G
has p-rank one, T (G) is finite and the result is obvious. So let us assume that G has
p-rank at least two. Then there exist elementary abelian p-subgroups E1, . . . , En ⊂
G of p-rank two, such that :

(a) when G has p-rank two, E1, . . . , En form a complete set of representatives
of the conjugacy classes of maximal elementary abelian p-subgroups;

(b) when G has p-rank three or more, E1, . . . , En−1 form a complete set of
representatives of the conjugacy classes of maximal elementary abelian p-
subgroups of p-rank two and every maximal elementary abelian p-subgroup
of p-rank three or more contains a conjugate of En.

The homomorphism ρ : T (G)→
∏n
i=1 T (Ei) ' Zn has finite kernel. (This n will be

the dimension of T (G)⊗Q.) It now suffices to prove that for each i = 1, ..., n we can
produce an endotrivial module Mi ∈ Pic loc.tr.(kG – stab) whose image under ρ is
(k, . . . , k,Ωri(k), k . . . , k) in

∏n
i=1 T (Ei) for some ri 6= 0. Moreover, by Example 4.5,

we have Ωd(k) ∈ Pic loc.tr.(kG – stab) for some d > 0, whose image under ρ is
(Ωd(k), . . . ,Ωd(k)), so it suffices to produce the above Mi only for i = 1, . . . , n− 1
and we can assume i = 1. Then, using Quillen’s Theorem, one shows the existence
of two elements η, ζ ∈ Hr1(G, k) for some r1 > 0, such that η restricts to zero on
every maximal elementary abelian p-subgroup not conjugate to E1 and such that
η, ζ restrict to a system of parameters in H•(E1, k) (see Ex. 4.5). One then considers
the disjoint closed subsets W1 = V (ζ) ∩ res∗G,E1

(VE1
) and W2 = V (η). Their open

complements (Ui := VGrWi)i=1,2 form an open cover of VG = Spc(kG – stab). The
support of the cone of η : Ωr1(k)→ k is exactlyW2, hence η is an isomorphism on U2

and a fortiori on U1 ∩ U2. Moreover, by construction of η, V (η) = W2 contains all
irreducible components of VG except res∗G,E1

(VE1). So, V (ζ) ⊂ W1 ∪W2, meaning

that ζ : Ωr1(k)→ k is an isomorphism on U1∩U2. In short, we have an isomorphism

k Ωr1(k)
ζoo η // k

on U1 ∩ U2 that we can use to glue two copies of k, that is, xi = k on Ui for
i = 1, 2, along the isomorphism σ21 = η ◦ ζ−1 on U1 ∩U2; see Thm. 2.8. We proved
in [6, Thm. 10.2] that the resulting gluing in kG – stab is the wanted endotrivial
module M1 , that is, its image under ρ is (Ωr1(k), k, . . . , k).

Example 4.9. Theorem 4.7 does not hold integrally. Take for instance G = Q8

the quaternion group of order 8 and p = 2. Then G has 2-rank one, hence VG is a
point and Pic(VG) = 0, but T (G) = Z/4 when k contains no cubic root of unity and
T (G) = Z/4⊕ Z/2 otherwise. See Dade [17] or Carlson–Thévenaz [14, Thm. 6.3].

We end the paper with an obvious application of Theorem 4.7 :

Corollary 4.10. Let H ⊂ G be a subgroup inducing an isomorphism VH
∼→ VG

on support varieties (e.g. H controls p-fusion, see Mislin [21] or Alperin [2]). Then

resG,H ⊗ idQ : T (G)⊗Q ∼→ T (H)⊗Q is an isomorphism. �
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Example 4.11. Corollary 4.10 does not hold integrally either. Let p > 2 be an
odd prime and let n be an integer 2p ≤ n < p2. Let G be the symmetric group
on n letters. As explained in Carlson–Mazza–Nakano [13, Thm. A (c)], we have
T (G) ' Z⊕ (Z/2)2 when 2p ≤ n < 3p and T (G) ' Z⊕Z/2 when 3p ≤ n < p2. On
the other hand, a p-Sylow subgroup P ⊂ G is abelian (even elementary abelian of
p-rank [np ]). So, by a celebrated theorem of Burnside, its normalizer H := NG(P )

controls p-fusion. Yet, the torsion part of T (H) is Z/(p− 1)⊕ Z/2 by [13, § 6].
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