
THE DERIVED CATEGORY OF AN ÉTALE EXTENSION

AND THE SEPARABLE NEEMAN-THOMASON THEOREM

PAUL BALMER

Abstract. We prove that étale morphisms of schemes yield separable ex-

tensions of derived categories. We then generalize the Neeman-Thomason
Localization Theorem to separable extensions of triangulated categories.

1. Introduction

Our purpose is to prove two theorems of independent interest, one about derived
categories in algebraic geometry and one about general triangulated categories.

If U ↪→ X is a Zariski open subscheme, it is well-known that the derived category
of U can be described out of that of X via Bousfield localization, that is, via a purely
triangular construction, not resorting to models. We generalize this result to an
étale morphism V → X by replacing Bousfield localization by a more powerful
triangular construction, namely separable extension of triangulated categories in
the sense of [Bal11]. This is Theorem 3.5. Summarizing the scope of separable
extensions of triangulated categories, they now cover:

(a) Bousfield localizations (see Example 3.2 for explanations)
(b) étale extensions in algebraic geometry (the above-mentioned Theorem 3.5)
(c) restriction to subgroups in equivariant stable homotopy categories, in equi-

variant KK-theory and in equivariant derived categories, by [BDS14].

This profusion of sources motivates the study of separable extensions of triangulated
categories per se.

Thus stimulated, and in view of the importance of Brown representability, we
prove a general result about separable extensions of compactly-generated triangu-
lated categories, extending the Neeman-Thomason Localization Theorem. This is
Theorem 4.2, where we give a simple criterion for such a separable extension to
remain compactly-generated and describe what happens on compact objects.

2. Compact reminder

2.1. Convention. All our schemes are assumed quasi-compact and quasi-separated,
even when not repeated. This is a very light assumption, satisfied by any noetherian
or any affine scheme for instance. Recall that a topological space is quasi-separated
if it admits a basis of quasi-compact open subsets. For a scheme, it means that the
intersection of any two affine open subsets remains quasi-compact.
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For a quasi-compact and quasi-separated scheme X, let us denote by Dqcoh(X)
the derived category of complexes of OX -modules with quasi-coherent homology.
If the reader wants to assume X separated, then Dqcoh(X) is simply the derived
category of quasi-coherent OX -modules itself, see [BN93, Cor.5.5]. Let us recall

two important properties of the triangulated category Dqcoh(X).
First of all, for a quasi-compact open subscheme j : U ↪→ X, the derived category

Dqcoh(U) of the subscheme is a smashing Bousfield localization of Dqcoh(X). This

means that the restriction functor j∗ : Dqcoh(X)→ Dqcoh(U) admits a fully faithful

right adjoint j∗ : Dqcoh(U)→ Dqcoh(X) which commutes with arbitrary coproducts.
In other words, if Z = X −U denotes the closed complement of U , we can identify

Dqcoh(U) as the Verdier localization Dqcoh(X)/Dqcoh
Z (X) of the ambient category

by its subcategory Dqcoh
Z (X) := Ker(j∗) =

{
x ∈ Dqcoh(X)

∣∣x|U ∼= 0 in Dqcoh(U)
}

supported on Z; furthermore the endofunctor L := j∗j
∗ on Dqcoh(X), which

receives the identity IdDqcoh(X)
λ−→ j∗j

∗, is a Bousfield localization functor (i.e.

Lλ = λL : L
∼→ L2) and L is moreover smashing, i.e. L commutes with coproducts.

Perhaps we should also remind the reader that localization of triangulated cate-
gories (i.e. inverting a class of maps) is equivalent to annihilating a subcategory of
objects (the cones of those maps). Hence the traditional notation with a quotient

“Dqcoh(X)/Dqcoh
Z (X)” to mean localization. These ideas are completely standard

nowadays (see [Nee01]) and a good survey can be found in [Kra10].
In short, the derived category of an open subscheme U ⊂ X can be described by

a purely triangular construction (localization) out of the derived category of X.
The second general fact we want to remind the reader about is that the category

Dqcoh(X) is compactly-generated, in the following sense; see details in [Nee01].

2.2. Definition. Let S be a triangulated category admitting all small coproducts.
An object c ∈ S is called compact if any morphism from c to a coproduct

∐
i∈I xi

factors via a finite sub-coproduct. The category S is called compactly-generated
if there exists a set of compact objects G ⊂ S such that for every x ∈ S, the
property HomS(g, x) = 0 for all g ∈ G forces x = 0. In this case, the subcategory
Sc of compact objects is an essentially small thick triangulated subcategory of S,
which is exactly Sc = thick(G) the thick envelope of G. Also, the smallest localizing
subcategory of S which contains Sc is the whole S. (A triangulated subcategory
L ⊂ S is localizing if it is closed under coproducts.) Hence the name “compactly-
generated” and the formula: Loc(Sc) = S.

In the geometric example of Dqcoh(X), the compact objects are exactly the

perfect complexes Dqcoh(X)c = Dperf(X), that is, those complexes which are locally
quasi-isomorphic to bounded complexes of vector bundles. These results were first
established by Neeman [Nee96] for X separated, and in the above generality by
Bondal and van den Bergh [BvdB03, § 3].

Compactly generated triangulated categories form an important class of “big”
triangulated categories, way beyond algebraic geometry. Their most remarkable
properties are the Brown representability theorem and its dual [Nee01, Chap. 8]
and [Kra02, § 2], which ensure that every (co)homological functor which maps
(co)products to products is (co)representable. This beautiful theory has its roots
in topology but branched out to many other settings, including motivic homotopy
theory or various equivariant stable homotopy theories. In algebraic geometry,
Neeman applied Brown representability to Grothendieck duality, see [Nee96].



THE ÉTALE NEEMAN-THOMASON THEOREM 3

Let us now recall the interaction between the two facts recorded above.
In the landmark paper [TT90], Thomason proved the following result, with

some ectoplasmic help from Trobaugh. Let U ⊂ X be a quasi-compact open
subscheme and Z = X − U its closed complement. Then the subcategory of com-
pact objects Dperf(U) is the idempotent completion (−)\ of the Verdier localization

Dperf(X)/Dperf
Z (X) of the ambient Dperf(X) by the thick subcategory Dperf

Z (X)

supported outside U . We know that Dperf(U) cannot be a localization of Dperf(X)
in general, because the map on Grothendieck groups K0(X) → K0(U) is not al-
ways surjective. Thomason’s breakthrough was to understand that this is the only
obstruction. In summary, on the “big” categories, we have the natural localization
but on the compact parts we need an idempotent completion :

Dqcoh(U) =
Dqcoh(X)

Dqcoh
Z (X)

whereas Dperf(U) =

(
Dperf(X)

Dperf
Z (X)

)\
.

This interplay between Bousfield localization and compact-generation was then
isolated by Neeman in the following abstract result (which recovers the above by

plugging S = Dqcoh(X) and Rc = Dperf
Z (X)) :

2.3. Theorem (Neeman-Thomason Localization Theorem [Nee92, Thm. 2.1]). Let
S be a compactly-generated triangulated category. Let Rc ⊂ Sc be a thick subcategory
of compact objects and R = Loc(Rc) the localizing subcategory it generates. Then
the smashing Bousfield localization T = S/R remains compactly-generated and its
subcategory of compact objects Tc is canonically the idempotent completion of the

corresponding Verdier localization on compacts : (Sc/Rc)\
'−→Tc.

We want to extend this theory from Bousfield localizations in the Zariski topology
to separable extensions in the étale topology.

3. Separable extensions and the étale topology

The Neeman-Thomason theory recalled in Section 2 works well for smashing
Bousfield localization of compactly-generated triangulated categories. Its incarna-
tion in algebraic geometry covers restriction to Zariski open subschemes.

However, smashing Bousfield localization has its limits. In algebraic geometry,
it can essentially describe nothing else than Zariski localization. Furthermore, if
we work with equivariant triangulated categories, Bousfield localization does not
produce restriction to subgroups. For instance, in modular representation theory,
if S = Stab(kG) is the stable module category of a finite group G over a field k,
there is no way to obtain the stable category T = Stab(kH) of a subgroup H ≤ G
by means of a localization S/R (except of course in the trivial cases where T = S

or T = 0). And similarly for equivariant stable homotopy categories : Restriction
SH(G) → SH(H) is never a localization. A solution to this problem has been
one of the first nice applications of separable extensions of triangulated categories,
in the sense of [Bal11]. Indeed, we first proved in [Bal12] that restrictions to
subgroups are separable extensions in modular representation theory. Then, in
the recent [BDS14], we proved similar results in many other equivariant settings,
including equivariant stable homotopy theory SH(G), or Kasparov’s equivariant
KK-theory of C*-algebras, or equivariant derived categories of schemes. Here, we
want to include étale morphisms of schemes to this list of examples.
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It is high time we recall those separable extensions of triangulated categories.

3.1. Definition. Let S be a triangulated category (in the precise sense of [Mal06,
Kün07, Bal11], which covers all stable homotopy categories in Nature). Consider a
monad A : S→ S, that is, an endofunctor equipped with multiplication µ : A◦A→ A
and two-sided unit η : IdS → A satisfying the usual rules of associative and unital
ring multiplication (µ ◦ Aµ = µ ◦ µA and id = µ ◦ Aη = µ ◦ ηA). This is a classical
notion, see [ML98, Chap. VI]. Also recall that the monad A is called separable if it
satisfies the analogue of the commutative algebra definition of separability, namely
if there exists a section σ : A → A2 of multiplication (µ ◦ σ = id) which is A-linear
on both sides (Aµ ◦ σA = σµ = µA ◦ Aσ). In our case S is triangulated, hence one
assumes A to be exact and σ : A→ A2 to be compatible with suspension.

3.2. Example. Suppose that the multiplication µ : A2 → A is an isomorphism. Then
A is separable, with σ = µ−1. This is admittedly the “trivial” case of separabil-
ity. And yet it is already an interesting case, since it is easy to see that µ is an
isomorphism if and only if Aη and ηA are equal isomorphisms (both equal to µ−1).

This means that IdS
η→ A is a Bousfield localization functor (and µ is forced to be

(Aη)−1). So, Bousfield localization functors are special cases of separable monads.

3.3. Remark. The main result of [Bal11] is that, under the assumption that A is
exact and separable, the category of A-modules in S remains triangulated. Let
us explain this statement. Thinking of a monad as a functorial version of a ring
in S, one defines an A-module in S as an object x ∈ S equipped with a morphism
ρ : Ax→ x such that ρ◦ηx = idx and ρ◦Aρ = ρ◦µx. These axioms express the usual
rules for modules: 1m = m and a(bm) = (ab)m respectively. In the same vein, a
morphism (x, ρ)→ (x′, ρ′) of A-modules in S is simply a morphism f : x→ x′ in S

such that ρ′ ◦Af = f ◦ ρ. This yields the category A - ModS of A-modules in S. The
resulting Eilenberg-Moore adjunction has been around for half-a-century [EM65] :

(3.4)

S

FA
��

A - ModS

UA

OO

The extension-of-scalars functor FA maps x ∈ S to the free A-module (Ax, µx).
Its right adjoint UA forgets the A-action (x, %) 7→ x. The theorem of [Bal11] says
that when A is exact and separable, A - ModS admits a unique triangulation which
makes FA and UA exact. When η : Id → A is a Bousfield localization functor
(see Example 3.2), this reproves the well-known fact that the Bousfield localization
A - ModS

∼=
{
x ∈ S

∣∣x is A-local, i.e. ηx isom.
} ∼= S/Ker(L) is triangulated. In

that case, the functor UA : A - ModS → S is fully faithful. For a general separable
extension as in (3.4), the functor UA is only faithful, i.e. FA is surjective up to direct
summands, i.e. every A-module x is a direct summand of a free one x ≤ FAUA(x).

We are now ready to state our first result, which extends [Bal11, Cor. 6.6] beyond
the affine and finite case. Recall that a scheme morphism f : V → X is separated
if the diagonal ∆f : V → V ×X V is a closed immersion. This is a rather weak
condition on a morphism which should not be confused with the separability of
Definition 3.1. As we shall see the latter is actually more strongly related to the
fact that f : V → X is unramified.
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3.5. Theorem. Let f : V → X be a separated étale morphism of quasi-compact
and quasi-separated schemes. Then the monad Af := Rf∗ ◦f∗ on Dqcoh(X) is exact
and separable (Def. 3.1) and there is a unique equivalence of triangulated categories

(3.6) E : Dqcoh(V )
∼−→ Af - ModDqcoh(X)

between the derived category of V and the category of Af -modules in the derived

category of X, under which f∗ : Dqcoh(X) → Dqcoh(V ) becomes isomorphic to

extension-of-scalars FAf
along Af and Rf∗ : Dqcoh(V ) → Dqcoh(X) becomes iso-

morphic to UAf
; see (3.4). Also, the monad Af commutes with arbitrary coproducts.

Proof. Details about the derived categories Dqcoh(X) and the adjunction f∗ a Rf∗
can be found in Lipman [Lip09]. It is a classical fact of adjunctions [ML98,
Thm. VI.3.1] that the (f∗,Rf∗)-adjunction compares to the Eilenberg-Moore ad-

junction (3.4) for the associated monad Af = Rf∗ ◦ f∗ on Dqcoh(X), via a unique
functor E

Dqcoh(X)
f∗

{{ FAf &&
Dqcoh(V )

Rf∗

;;

E
// Af - ModDqcoh(X)

UAf

ff

which is a morphism of adjunctions, meaning that E ◦f∗ = FAf
and UAf

◦E = Rf∗.
Explicitly, E is given by the formula

(3.7) E(y) =
(
Rf∗(y) , Rf∗(εy)

)
for all y ∈ Dqcoh(V ) where εy : f∗Rf∗(y) → y is the counit of the (f∗,Rf∗)-

adjunction. Note that Rf∗(εy) is a morphism Af (Rf∗(y)) = Rf∗f
∗Rf∗(y)

Rf∗(ε)−→ Rf∗(y)

which indeed describes an Af -action on the object Rf∗(y) of Dqcoh(X).
In this situation, by [Bal12, Lemma 2.10], we can prove simultaneously that Af

is separable and that E is an equivalence by showing that the counit ε : f∗Rf∗ →
IdDqcoh(V ) is a split epimorphism, that is, there exists a natural transformation
ξ : IdDqcoh(V ) → f∗Rf∗ such that ε ◦ ξ = id. Let us do that here.

Since f is étale, it is unramified. By EGA [Gro67, IV.17.4.2, p. 65], this implies
that the diagonal ∆f : V → V ×X V is an open immersion. On the other hand,
since we assume f separated, ∆f is also closed, hence ∆f : V ↪→ V ×X V is
an isomorphism onto a closed and open subscheme. In other words, there is a
disconnected decomposition V ×X V ' V t Z for some scheme Z, in such a way
that ∆f : V → V ×X V is the inclusion of V in V t Z. Since the two projections
pri : V ×X V → V satisfy pri ◦∆f = idV , we have the following cartesian diagram :

V ×X V ∼= V t Z

pr1=(id p1)

��

pr2=

(id p2)
// V

f

��
V

f // X

for some morphisms p1, p2 : Z → V . We want to use flat base-change on this square.
Note that since f is étale, it is also flat. Since X and V are quasi-compact and
quasi-separated (“concentrated” in Lipman’s terminology), then so is f by [GD71,
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Cor. I.6.1.10]. Hence we can apply base-change [Lip09, Prop. 3.9.5], which gives us

a natural isomorphism θ : f∗Rf∗
∼−→Rpr1∗ pr2

∗ defined as follows :

θ : f∗Rf∗
η2−→ f∗Rf∗ Rpr2∗ pr2

∗ ∼= f∗Rf∗ Rpr1∗ pr2
∗ ε−→Rpr1∗ pr2

∗

where η2 is the unit of the (pr2
∗,Rpr2∗)-adjunction (on which one applies f∗Rf∗),

where ε is our counit (applied to Rpr1∗ pr2
∗) and where the middle canonical iso-

morphism comes from f pr1 = f pr2. On the other hand, we have in our case
that R pr2∗ pr2

∗ ∼= R(id p2)∗ (id p2)∗ ∼= Id⊕Rp2∗ p2
∗ and similarly Rpr1∗ pr2

∗ ∼=
Id⊕Rp1∗ p2

∗. Under this decomposition η2 becomes ( id
? ) (where ? is the unit of the

(p2
∗,Rp2∗)-adjunction). So, the above isomorphism θ is the following composition

f∗Rf∗
( id
? )
−→ f∗Rf∗⊕f∗Rf∗ Rp2∗ p2

∗

(
id 0
0 ∼=

)
−→ f∗Rf∗⊕f∗Rf∗ Rp1∗ p2

∗ ( ε 0
0 ε )
−→ Id⊕Rp1∗ p2

∗.

The fact that this composite is an isomorphism proves that ε (in the upper-left
corner of the last map) is a split epimorphism, as wanted.

Finally, both f∗ and Rf∗ preserve coproducts (for the latter, one can use that
its left adjoint f∗ preserves compacts). Hence so does Af = Rf∗ ◦ f∗. �

Note that the above result implies that Rf∗ is faithful, as is every UA. However it
is not fully faithful in general, unlike what happens for j∗ : Dqcoh(U) → Dqcoh(X)
in the case of a Zariski open immersion j : U ↪→ X.

3.8. Remark. The adjunction f∗ : Dqcoh(X) � Dqcoh(V ) : Rf∗ satisfies the projec-

tion formula Rf∗(y)⊗ x ∼→ Rf∗(y ⊗ f∗(x)) for all y ∈ Dqcoh(V ) and x ∈ Dqcoh(X);
see [Lip09, 3.9.4]. Here ⊗ denotes the respective left derived functors of ⊗OX

and ⊗OV
. This formula implies that the monad Af is actually isomorphic to the

monad Rf∗(OV )⊗− induced by the ring object Af := Rf∗(OV ) in Dqcoh(X), ob-
tained by evaluating the monad at the ⊗-unit. See details in [BDS14, Lemma 2.7].
One can therefore rephrase Theorem 3.5 with modules over the ring object Af =
Af (1) instead of the monad Af . This is left to the interested reader.

Echoing [Bal12, Question 4.7], one may wonder if the above Af are essentially

the only possible commutative separable monoids (a. k. a. “tt-rings”) in Dqcoh(X).

We have chosen to follow a tensor-free treatment to avoid overloading the discus-
sion. There are two reasons for this choice. First, even in the Zariski case one often
considers j∗ and j∗ instead of the ring object j∗OU . But more importantly, the
results of this section are a (further) motivation to study separable extensions of
triangulated categories, be they tensor triangulated categories or not. For instance,
the generalized Neeman-Thomason theorem of the next section will hold for general
monads, not only for ring objects. In particular, it does not require a tensor struc-
ture. Summarizing the examples of separable extensions of triangulated categories,
we know at this stage that they include Bousfield localizations, étale morphisms
in algebraic geometry and, thanks to [BDS14], restriction to subgroups in a broad
variety of equivariant stable homotopy categories.

4. The Neeman-Thomason Theorem for separable extensions

The broad array of examples summarized at the end of the previous section
invites us to study separable extensions of triangulated categories for themselves.
In this section, we prove a generalization of the Neeman-Thomason Theorem 2.3 in
that setting. Let us start with the only “new” definition (of sorts) of the paper:
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4.1. Definition. A monad A : S→ S is smashing if it commutes with coproducts.

In view of Example 3.2, this notion extends the usual notion of smashing Bous-
field localization functor. The localization associated to a subcategory R = Loc(Rc)
as in the Neeman-Thomason Theorem 2.3 is smashing. This classical result is at-
tributed to Ravenel, Adams and Bousfield in Neeman [Nee92], although we fol-
low [HPS97] who refer to Miller [Mil92]. In algebraic geometry, we have seen in
Theorem 3.5 that the monad Af which describes an étale extension is also smashing.
Definition 4.1 is clearly the right one for our purposes:

4.2. Theorem. Let S be a compactly-generated triangulated category (Def. 2.2) and
let A : S→ S be a separable exact monad (Def. 3.1) which is smashing in the above
sense. Then the triangulated category T = A - ModS of A-modules in S (Rem. 3.3) is
also compactly-generated and the subcategory of compact objects Tc coincides with
the thick subcategory generated by the image of Sc under extension-of-scalars FA :
S→ T along A :

(4.3) Tc = thick(FA(Sc)) .

If moreover, A preserves compacts, i.e. A(Sc) ⊆ Sc, then we have an equality

(A - ModS)c = A - ModSc

of subcategories of T = A - ModS. In that case, every compact object of T is a direct
summand of the image FA(c) of a compact object c ∈ Sc.

4.4. Lemma (See [HR14, Lem. 8.2]). Let F : S � T : U be an adjunction of exact
functors between triangulated categories with arbitrary coproducts and suppose that
S is compactly generated. If the right adjoint U preserves arbitrary coproducts, then
F preserves compact objects. If moreover U is conservative (i.e. U(t) = 0⇒ t = 0
for any object t ∈ T) then T is also compactly generated and Tc = thick(F (Sc)).

Proof. The first statement is [Nee96, Thm. 5.1]. So, let us assume that U is conser-
vative and let G ⊂ Sc be a set of compact generators. By the first part, the set F (G)
consists of compact objects. Suppose now that t ∈ T is such that HomT(F (g), t) = 0
for all g ∈ G; then HomS(g, U(t)) = HomT(F (g), t) = 0 by adjunction. Since G gen-
erates S, we have U(t) = 0 and therefore t = 0 since U is conservative. Hence the
set F (G) generates T and therefore Tc = thickF (G) ⊆ thickF (Sc) ⊆ Tc. �

Proof of Theorem 4.2. First observe that the category of A-modules T = A - ModS

admits arbitrary coproducts in the obvious way :
∐
i∈I(xi, ρi) =

(∐
i∈I xi ,

∐
i∈I ρi

)
,

using that A commutes with coproducts for
∐
i ρi to be an A-action on

∐
i xi. This

is where we use that A is smashing. In particular, we see that FA (unsurprisingly
for a left adjoint) and UA both preserve coproducts; for UA it follows from the above
explicit formula for coproducts in T. We thus fall in the general assumptions of
Lemma 4.4 and conclude that T is compactly generated and that Tc = thickFA(Sc).

Now suppose moreover that A preserves compact objects, so that A : Sc → Sc

is a separable exact monad on Sc. In particular, we can form the triangulated
category A - ModSc of A-modules in Sc, which is a full subcategory of A - ModS = T

in the obvious canonical way. This subcategory A - ModSc is idempotent-complete
as it is the idempotent completion of the category FA(Sc) of free A-modules in Sc

(see [Bal11, Thm. 5.17] again). It follows that A - ModSc = thickFA(Sc) = Tc by
the above discussion. Hence Tc = FA(Sc)\ as claimed. �
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4.5. Remark. Although we do not use Neeman’s Theorem in our proof, we do use
several of his results about compactly-generated categories. Hence our work does
not supersede Neeman’s but truly expands it to new territories. The separable
statement (4.3) is slightly more complicated than the Neeman-Thomason counter-
part but this is the price for increased generality. Actually, we can sketch a proof of
Neeman’s Theorem 2.3 from Theorem 4.2 as follows. If Rc ⊂ Sc then R = Loc(Rc)
is a smashing subcategory of S by Miller [Mil92] and family. Hence the associated
Bousfield localization L : S → S commutes with coproducts, i.e. L is a smashing
separable monad. By the above Theorem 4.2, T = L - ModT

∼= S/R is compactly
generated and its compact part is Tc = thick(FL(Sc)), where FL : S → T is the
quotient functor. Now one verifies that the induced functor Sc/Rc → Tc is fully
faithful by playing around with fractions and the fact [Nee01, Thm. 4.3.3] that any
morphism c → x in S with c compact and x ∈ R = Loc(Rc) must factor via an
object of Rc. Combining the above results, Sc/Rc can be identified with a triangu-
lated subcategory of Tc = (Tc)\ and Tc = thick(Sc/Rc) ∼= (Sc/Rc)\ since Sc/Rc is
already triangulated. This implies that (Sc/Rc)\ ↪→ Tc is an equivalence.

4.6. Remark. Following-up on Remark 3.8, we can consider the situation where
the compactly-generated category S is a tensor triangulated category, such that ⊗
commutes with coproducts in each variable. The latter is automatic if S admits
an internal hom functor S

op × S → S, right adjoint to the tensor. If A ∈ S is a
separable ring object in S, then the associated monad A ⊗ − : S → S is therefore
automatically smashing in the sense of Definition 4.1. Hence the category A - ModS

is automatically compactly generated in that case. Assuming that A⊗− preserves
compacts simply means that A itself is compact, at least in the common case where
the ⊗-unit 1 is compact. In that case, we get (A - ModS)c = A - ModSc .

4.7. Remarks. Some comments on the interaction of Theorems 3.5 and 4.2.

(1) Let f : V → X be a separated étale morphism. Then, by Theorems 3.5 and 4.2,

Dperf(V ) is the thick subcategory of Dqcoh(V ) generated by f∗(Dperf(X)). In
particular, there exists a perfect complex G over X such that f∗(G) is a perfect

generator of Dqcoh(V ), using [BvdB03, Thm. 3.1.1].

(2) The above fact is known more generally for f quasi-affine, at least as folklore.
The reason is that for f quasi-affine Rf∗ is conservative and we can apply
Lemma 4.4, without the need for Rf∗ to be faithful.

(3) The above does not hold for a general morphism though, not even a smooth one.
Already for projective space f : P1

k → Spec(k), for k a field, the subcategory

thick(f∗(Dperf(k))) is only a proper part of Dperf(P1
k), equivalent to Dperf(k)

under Rf∗. For instance, the object OP1(1) does not belong to it.

4.8. Corollary. If f : V → X is finite and étale then Dperf(V ) ∼= Af - ModDperf (X).

Proof. In that case, f is affine hence exact and Af = Rf∗(OV ) = f∗(OV ) is a flat
and locally finitely generatedOX -module, hence a vector bundle onX. In particular
Af ∼= Af ⊗− preserves perfect complexes and we can apply the “moreover part” of
Theorem 4.2. �
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schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math.,

(20, 24, 28, 32), 1967.

[HPS97] Mark Hovey, John H. Palmieri, and Neil P. Strickland. Axiomatic stable homotopy
theory. Mem. Amer. Math. Soc., 128(610), 1997.

[HR14] Jack Hall and David Rydh. Perfect complexes on algebraic stacks. Preprint available at
http://arxiv.org/abs/1405.1887, 2014.

[Kra02] Henning Krause. A Brown representability theorem via coherent functors. Topology,

41(4):853–861, 2002.
[Kra10] Henning Krause. Localization for triangulated categories. In Triangulated categories,

volume 375 of London Math. Soc. Lecture Note Ser., page 161235. Cambridge Univ.

Press, Cambridge, 2010.
[Kün07] Matthias Künzer. Heller triangulated categories. Homology, Homotopy Appl., 9(2):233–

320, 2007.

[Lip09] Joseph Lipman. Notes on derived functors and Grothendieck duality. In Foundations of
Grothendieck duality for diagrams of schemes, volume 1960 of Lecture Notes in Math.,

pages 1–259. Springer, Berlin, 2009.

[Mal06] Georges Maltsiniotis. Catégories triangulées supérieures. Preprint available online at
http://people.math.jussieu.fr/$\sim$maltsin/ps/triansup.ps, 2006.

[Mil92] Haynes Miller. Finite localizations. Bol. Soc. Mat. Mexicana (2), 37(1-2):383–389, 1992.
Papers in honor of José Adem (Spanish).
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