
KOSZUL COMPLEXES AND SYMMETRIC FORMS
OVER THE PUNCTURED AFFINE SPACE

PAUL BALMER AND STEFAN GILLE

Abstract. Let X be a regular separated Z[1/2]-scheme of finite Krull dimen-

sion and let U n
X ⊂ An

X be the punctured affine n-space over X. We show

that the total graded Witt ring Wtot(U n
X) is a free Wtot(X)-module with two

generators 1 and ε. The second generator satisfies the equation ε2 = 1 when

n = 1 and ε2 = 0 when n ≥ 2.

Introduction

Let X be scheme. We are studying the (total) graded Witt ring

Wtot(X) :=
⊕
i∈Z

Wi(X)

where the groups Wi are the derived Witt groups of Balmer [2, 3] with the multi-
plicative structure of Gille-Nenashev [11]. See more in Section 2.

We fix an integer n ≥ 1 for the entire article. Consider the following open subset
Un

Z ⊂ AnZ of the affine space AnZ = Spec(Z[T1, . . . , Tn]) :

Un
Z :=

n⋃
j=1

Spec
(
Z
[
T1, . . . , Tn, T

−1
j

])
⊂ AnZ .

For any scheme X, define by base-change the open subscheme Un
X ⊂ AnX , called the

punctured affine space over X, i.e. define Un
X to be the following pull-back :

Un
X := X × Un

Z

Our main results are summarized in Theorem 8.13 below, which says :

Theorem. If X is regular, contains 1
2 and has finite Krull dimension, there is a

decomposition Wtot(Un
X) = Wtot(X) ⊕Wtot(X) · ε for some Witt class ε = ε(n)

X in
Wn−1(Un

X). If n=1, we have ε2 = 1. If n ≥ 2, we have ε2 = 0 and an isomorphism

Wtot(Un
X) ∼=

Wtot(X) [ε]
ε2

of graded rings, with the generator ε in degree n− 1.

When n = 1, and at least for X affine, Un
X consists of the “Laurent polynomials”

over X, in which case the above Theorem is due to Ranicki [16], see also [15]. Note
that the decomposition of Wtot(Un

X) for n = 1 as two copies of Wtot(X) remains
true for n ≥ 2, but that the second copy is shifted by n− 1, which is of course not
visible when n = 1. Note also that the ring structure is different from the Laurent
case when n ≥ 2. The special case n = 1 also shows that this result cannot hold in
general for non-regular schemes, see Ojanguren-Panin [15, § 8].
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The second goal of the article is an explicit description of the Witt class ε(n)

X ∈
Wn−1(Un

X). It is constructed as the Witt class of a symmetric space denoted
E(n)

X = (E(n)

X , ξ
(n)

X ), which exists for any scheme X, not necessarily regular. Here E(n)

X

is a complex in the derived category of vector bundles over Un
X and the form ξ(n)

X

is a symmetric quasi-isomorphism. Both are constructed via a suitable truncation
of the Koszul complex over AnX for the regular sequence (T1, . . . , Tn). This explicit
description is necessary to prove the following fact (see Theorem 8.10) :

Theorem. Assume n ≥ 2. The symmetric space E(n)

X is locally metabolic on Un
X .

This result does not hold for n = 1 and is used to establish the announced
relation (ε(n)

X )2 = 0, see Theorem 8.12. On the other hand, Theorem 9.2 says :

Theorem. The symmetric space E(n)

X cannot be extended from Un
X to AnX , not even

up to Witt equivalence. In particular, E(n)

X is not metabolic on Un
X .

In other words, this symmetric space E(n)

X is a little miracle happening over Un
X ,

which vanishes when restricted to smaller open subschemes and which cannot be
extended to the bigger scheme AnX .

Our last goal is a description of the generator ε(n)

X ∈ Wn−1(Un
X) in “classical”

terms. Recall a few facts. First, the derived Witt groups are 4-periodic : Wi =
Wi+4. Secondly, W0 and W2 are naturally isomorphic to the usual Witt groups W+

us

and W−
us of symmetric and skew-symmetric vector bundles respectively, as defined

by Knebusch [14]. Thirdly, W1 and W3 = W−1 are groups of formations, see
Walter [18]. So, describing “in classical terms” our generator ε(n)

X in Wn−1 amounts
to produce an explicit element of the above nature, i.e. a ±1-symmetric form or
formation, depending on the congruence of n modulo 4. This short symmetric space
is denoted F(n)

X and appears in Section 7.
There are two appendices. In the first one, we show that when n ≥ 4 our locally

free OU n
X

-module E (n)

X cannot be extended to a locally free OAn
X

-module and in
particular E (n)

X is not free. The second appendix contains the compatibility between
product and 4-periodicity, a fact which we use several times in this work.
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1. Conventions and notations

We collect here the notations which are kept unchanged in all sections.
First of all, recall that we have fixed an integer n ≥ 1. We decompose it as

n = 4 q + r + 1 (1)

where q ∈ N and r ∈ {−1, 0, 1, 2}. Note that n− 1 ≡ r mod 4. We also baptize[n
2

]
=: ` . (2)

Convention 1.1. Unless mentioned, a ring means a commutative ring with unit.

Convention 1.2. As always, when using a notation defined for schemes X in the
affine case, X = Spec(R), we shall drop “Spec” as for instance : VBR, Db(VBR),
Wi(R) instead of VBSpec(R), Db(VBSpec(R)), Wi(Spec(R)), and so on. See 2.12.

Convention 1.3. We shall say that a scheme is regular if it is noetherian and
separated and if all its local rings are regular.

Notation 1.4. Let f : Y → X be a morphism of schemes. We denote by AnX the
affine n-space and by Un

X the punctured affine n-space as in the introduction. The
obvious structure morphisms and base-change morphisms will be denoted :

Un
Y

σY

''
ιY

//

υf

��

AnY πY

//

αf

��

Y

f

��
Un
X ιX

//

υX

��

AnX πX

//

αX

��

X

��
Un

Z ιZ
// AnZ πZ

// Spec(Z) .

(3)

2. Recalling derived Witt groups

This section is a quick course on triangular Witt groups over schemes, included
only for the reader’s convenience. Here, X is a scheme with structure bundle OX .

2.1. Categories and dualities.

We denote by the symbol VBX the exact category of locally free OX -modules of
finite rank, i.e. vector bundles. The usual duality on VBX is abbreviated

(−)∨ := HomOX
(−,OX) .

Db(VBX) stands for the bounded derived category of VBX . We use homological
notations for complexes. The translation functor Σ : Db(VBX) −→ Db(VBX), also
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written P• 7−→ P•[1], is given by (P•[1])j = Pj−1; as usual, Σ changes the sign of
all differentials : dP [1]

j = −dPj−1.
Let P• = (P•, dP• ) be a complex in Db(VBX). Its dual DX(P•) is the complex

DX(P•) := . . . // P−j
∨ dP

−j+1
∨

// P−(j−1)
∨ // . . .

deg j deg (j − 1)

and similarly for morphisms of complexes. In other words, DX is the derived functor
of (−)∨ = HomOX

(− ,OX). This defines a 1-exact duality on Db(VBX) turning it
into a triangulated category with duality in the sense of [2]. Recall that “1-exact”

means that the dual of an exact triangle N•
ρ // P•

φ // Q•
ϕ // N•[1] is given

by

DX(Q•)
DX(φ) // DX(P•)

DX(ρ) // DX(N•)
DX(ϕ)[1] // DX(Q•)[1] .

The isomorphism between the identity and the double dual, $ : idDb(VBX)
'−→

DXDX , is given in each degree j by the canonical (evaluation) isomorphism canPj :
Pj −→ Pj

∨∨. We consider VBX as a subcategory of Db(VBX) via the natural
embedding VBX −→ Db(VBX), which we denote c0. The restriction of the duality
DX to this subcategory is the original duality of VBX and the restriction of $ is
the above can .

Definition 2.2. Let P• be a complex in Db(VBX). Let i ∈ Z, and φ : P• −→
DX(P•)[i] be a morphism in Db(VBX). We say that φ is an symmetric i-form on
the complex P• if

DX(φ)[i] · $P• = (−1)
i(i+1)

2 φ .

We then say that (P•, φ) is a symmetric i-pair. If φ is moreover an isomorphism we
say that (P•, φ) is a symmetric i-space over X. Two symmetric i-pairs (P•, φ) and
(Q•, ψ) are called isometric if there exists in Db(VBX) an isometry between them,
that is, an isomorphism h : P•

'−→ Q• such that φ = DX(h)[i] · ψ · h.

Remark 2.3. Note that if (P•, φ) is a symmetric i-pair then (P•[2], φ[2]) is a
symmetric (i+ 4)-pair because DX(P•)[1] = DX(P•[−1] ) for all P• ∈ Db(VBX).

Let f : Y −→ X be a morphism of schemes. There is a natural isomorphism
of functors ηf : f∗DX

'−→ DY f∗ which is induced by the natural isomorphism of
locally free OY -modules f∗HomOX

(P,OX) '−→ HomOY
(f∗P,OY ). If now (P•, φ)

is a symmetric i-space over X then the isomorphism

f∗(P•)
f∗φ−−→ f∗(DX(P•)[i]) = f∗(DX(P•))[i]

ηf,P [i]−−−−→ DY (f∗P•)[i]

is a symmetric i-form and so f∗(P•, φ) := (f∗(P•) , ηf,P [i] · f∗(φ)) a symmetric
i-space over Y .

2.4. “Short” i-forms : Forms and formations.

We present examples of symmetric i-pairs (P•, φ) in four cases i = −1, 0, 1, 2.
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i = 0 deg 0

· · · 0 // P0
//

φ0=φ
∨
0

��

0 · · ·

· · · 0 // P0
∨ // 0 · · ·

i = 1 deg 1 deg 0

· · · 0 // P1
d //

φ1

��

P0
//

−φ∨1
��

0 · · ·

· · · 0 // P0
∨

−d∨
// P1

∨ // 0 · · ·

i = 2 deg 1

· · · 0 // P1
//

φ1=−φ∨1
��

0 · · ·

· · · 0 // P1
∨ // 0 · · ·

i = −1 deg 0 deg -1

· · · 0 // P0
d //

φ0

��

P−1
//

φ∨0

��

0 · · ·

· · · 0 // P−1
∨

−d∨
// P0

∨ // 0 · · ·

In each case, the complexes P• and P•
∨ are depicted horizontally and the sym-

metric i-form φ : P• −→ DX(P•)[i] vertically. The symmetric pairs of the left-hand
column are classical symmetric and skew-symmetric forms embedded in Db(VBX)
via the functor c0 (slightly pushed to the left for i = 2). These symmetric i-pairs
are i-spaces exactly when φ0 and φ1 is an isomorphism. The symmetric i-pairs of
the right-hand column are i-spaces when φ is a quasi-isomorphism, i.e. when its
cone is an exact complex; these are formations; we call them symmetric if i = −1
and skew-symmetric if i = 1. The four types of i-form presented above will be
called short, for the obvious reasons.

2.5. Product of symmetric spaces.

The precise definition of this product is given in [11], where the reader will also
find an explanation for the existence of two different products – the left and the
right one – which differ by signs. To fix the ideas, we will use here the left product.
Let (P•, φ) be a symmetric i-form and (Q•, ψ) a symmetric j-form. The product

(P•, φ) ? (Q•, ψ)

is then a symmetric (i+ j)-form on the tensor product (of complexes) P• ⊗OX
Q•

and we denote it by (P• ⊗OX
Q• , φ ? ψ). Up to signs and identifications like for

instance P• ⊗OX
(Q∨

• [j]) ' (P• ⊗OX
Q∨
• )[j], the morphism of complexes φ ? ψ is

equal to the tensor product φ⊗ψ. Via c0, this product coincides on short 0-spaces
with the usual tensor product of symmetric spaces as defined in Knebusch [14].

2.6. Symmetric cones.

We now recall the important cone construction. Let φ : P• −→ DX(P•)[i] be a
symmetric i-form (maybe not an isomorphism). Let Q• be the mapping cone of φ.
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Then, there exists an isomorphism ψ such that the following diagram commutes :

P•
φ //

(−1)
i(i+1)

2 ·$P∼=
��

DX(P•)[i]
u //

=

��

Q•
v //

'ψ
��

P•[1]

(−1)
i(i+1)

2 ·$P [1] ∼=
��

DXDX(P•)
DX(φ)[i]

// DX(P•)[i]
−DX(v)[i+1]

// DX(Q•)[i+ 1]
(−1)iDX(u)[i+1]

// DXDX(P•)[1]

If the isomorphism ψ is moreover a symmetric (i+ 1)-form, we call such a diagram
a cone diagram (over φ) and we say that (Q•, ψ) is a symmetric cone of the pair
(P•, φ).

Note that both rows of the diagram are exact triangles in Db(VBX) : The upper
one by definition and the lower one is the dual of the upper row, shifted i times.
Assume for a moment that 2 is invertible over our scheme X. Then we can always
choose the isomorphism ψ to be a symmetric (i + 1)-form, see [2]. Moreover, if
(Q′

•, ψ
′) is another symmetric cone of φ, then there exists an isometry (Q•, ψ) '

(Q′
•, ψ

′). We say then that (Q•, ψ) is the symmetric cone of φ, in symbols :

(Q•, ψ) = coneφ = cone(P•, φ) .

2.7. Witt groups.

The usual Witt group of symmetric (respectively skew-symmetric) spaces Wus(X)
(respectively W−

us(X)) classifies these spaces up to isometry and modulo metabolic
ones. More information about these Witt groups can be found in the fundamental
paper of Knebusch [14]. The i-th derived Witt group Wi(X) classifies symmetric
i-spaces up to isometry and modulo neutral spaces, i.e. spaces with Lagrangian (cf.
[2], Sect. 2). In fact, a symmetric i-space is neutral exactly if it is a symmetric cone
of some symmetric (i − 1)-form, as described above. Observe that this definition
does not require 2 to be invertible in X. We denote by [P•, φ] the Witt class of
(P•, φ).

The Witt groups are contravariant functors. If f : Y −→ X is a morphism
of schemes then the assignment [P•, φ] 7−→ [f∗(P•, φ)] defines a homomorphism
f∗ : Wi(X) −→ Wi(Y ) for all i ∈ Z.

2.8. Periodicity.

The derived Witt groups are 4-periodic. The shift by two: P• 7−→ P•[2] induces
an isomorphism τ : Wi(X) '−→ Wi+4(X) for all i ∈ Z and all schemes X. The same
periodicity applies to the Witt groups with support defined below.

2.9. Agreement.

We assume now that “X contains 1
2”, i.e. that X is a Z[1/2]-scheme, i.e. 2 is

invertible in the ring Γ(X,OX). The main result of [3] is that the functor c0 :
VBX −→ Db(VBX) induces isomorphisms :

W(X) = Wus(X) '−→ W0(X) [P, φ] 7−→ [c0(P ), c0(φ)]

and
W−(X) = W−

us(X) '−→ W2(X) [Q,ψ] 7−→ [c0(Q)[1] , c0(ψ)[1] ] .



KOSZUL COMPLEXES AND THE PUNCTURED AFFINE SPACE 7

2.10. Localization (with 1
2 ).

Other Witt groups appearing in this work are the Witt groups with support. For
a complex P• ∈ Db(VBX) let

suppP• := {x ∈ X | Hj(P•)x 6= 0 for at least one j } ,

be its (homological) support. Let Z be a closed subscheme of X with open comple-
ment U . The full triangulated subcategory of Db(VBX) which consists of complexes
with support contained in Z is denoted Db

Z(VBX). The restriction of the duality
DX to Db

Z(VBX) is again a duality, turning Db
Z(VBX) into a triangulated category

with duality. The corresponding triangular Witt groups Wi
Z(X) (i ∈ Z) are called

the derived Witt groups of X with support in Z. They appear in the localization
sequence of Balmer [2]. If X is a regular scheme then there is an exact sequence

· · · // Wi(X) // Wi(U)
∂ // Wi+1

Z (X) // Wi+1(X) // · · · .

The connecting morphism ∂ comes from the cone construction 2.6 as follows. Let
w ∈ Wi(U). Then ∂(w) = [cone(P•, φ)], where (P•, φ) is any symmetric i-pair over
X with [(P•, φ)|U ] = w (the existence of (P•, φ) is guaranteed by regularity of X).
The Witt groups with support are natural and so is the localization sequence.

2.11. The graded Witt ring.

The (left) product of symmetric spaces of 2.5 yields a product structure

? : Wi(X) × Wj
Z(X) −→ Wi+j

Z (X) ( [P•, φ] , [Q•, ψ] ) 7−→
[
(P•, φ) ? (Q•, ψ)

]
for any i, j ∈ Z, any scheme X and closed subset Z ⊆ X. Via this pairing,
Wtot(X) :=

⊕
i∈Z

Wi(X) is a graded skew-commutative associative W0(X)-algebra,

the graded Witt ring of X and Wtot
Z (X) :=

⊕
i∈Z

Wi
Z(X) is a graded Wtot(X)-module.

Remark 2.12. Of course, Convention 1.2 applies here as well. For instance, if
X = Spec(R) is affine and Z ⊂ X is defined by the ideal I we might say that a
complex “has support in the ideal I” and we shall write Wi

I(R) instead of Wi
Z(X).

3. Basic facts about Koszul complexes

In this section, A is a ring, T = (T1, . . . , Tn) is any sequence in A, and I :=
n∑
i=1

ATi is the ideal generated by T . As before, we write the dual as M∨ :=

HomA(M,A), for any A-module M .

We first recall the definition of the Koszul complex

K•(A, T ) =: (K• , d•) .

Let e1, e2, . . . , en be a basis of the free A-module An =
⊕n

i=1A · ei. The A-module

Ki = Ki(A, T ) :=
i∧
An is by definition the i-th exterior power of An. As is well-

known, the module Ki is free with basis {ej1 ∧ · · · ∧ eji
∣∣ 1 ≤ j1 < . . . < ji ≤ n}.
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The differential di = di(A, T ) : Ki −→ Ki−1 is given by

ej1 ∧ . . . ∧ eji 7−→
i∑

k=1

(−1)k−1 Tjk · ej1 ∧ . . . êjk . . . ∧ eji ,

where the symbol êjk indicates that ejk has been omitted. We consider this (ho-
mological) Koszul complex K•(A, T ) :

· · · 0 // Kn(A, T )
dn(A,T ) // Kn−1(A, T ) // . . . d1(A,T ) // K0(A, T ) // 0 · · ·

as an element of Db(VBA) with Kj(A, T ) in degree j.
There is a structure of symmetric n-space on K•(A, T ), that we now give in

an economic way; see more details in Remark 3.2. For each i = 1, . . . , n, let
K•(A, Ti) ∈ Db(VBA) be the short Koszul complex for the one-element sequence
(Ti), i.e.

K•(A, Ti) = . . . // 0 // A
·Ti // A // 0 // . . .

deg 1 deg 0 .

This complex can be equipped with the following symmetric 1-form (see 2.2) :

K•(A, Ti) =

:=Θ(A,Ti)
��

· · · 0 // A
·Ti //

− id

��

A //

id

��

0 · · ·

DA(K•(A, Ti))[1] = · · · 0 // A
·(−Ti) // A // 0 · · ·

deg 1 deg 0 ,

where we identify A = HomA(A,A) as usual. This is the cone of the symmetric

form A
·(−Ti)−−−−→ A = HomA(A,A), and so in particular a symmetric 1-space. It is

easily checked that the tensor product of complexes K•(A, T1)⊗A . . . ⊗AK•(A, Tn)
is equal to the Koszul complex K•(A, T ) of the sequence T = (T1, . . . , Tn) and
therefore we can give the following :

Definition 3.1. With the above notations, we define a symmetric n-form

Θ(A, T ) : K•(A, T ) −→ DA(K•(A, T ))[n]

as the product (see 2.5)(
K•(A, T ) , Θ(A, T )

)
:=

(
K•(A, T1),Θ(A, T1)

)
? . . . ?

(
K•(A, Tn),Θ(A, Tn)

)
.

This defines a symmetric n-space
(
K•(A, T ) , Θ(A, T )

)
which we call the canonical

space on the Koszul complex K•(A, T ).

Remark 3.2. To define this canonical space on K•(A, T ), it is not necessary to use
the product structure of the derived Witt groups. The advantage of this approach
is that we see at once that the canonical n-space is a symmetric n-space, but for
calculations in the sequel it might be useful to have a good description of the
symmetric n-form Θ(A, T ). We define an isomorphism

ρ : K•(A, T ) '−→ DA(K•(A, T ))[n]
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following [7], Sect. 1.6. We fix for this an isomorphism ω :
∧n(An) '−→ A, and

define an A-bilinear pairing

bi : Ki(A, T ) × Kn−i(A, T ) −→ A

by (x, y) 7−→ ω(x ∧ y) for all 0 ≤ i ≤ n. This bi induces a homomorphism %i :
Ki(A, T ) −→ HomA(Kn−i(A, T ), A) = Kn−i(A, T )∨ which is an isomorphism for
all 0 ≤ i ≤ n. It is straightforward to check (see [7, Prop. 1.6.10] if necessary) that

dn−(i−1)(A, T )∨ · %i = (−1)i−1%i−1 · di(A, T ) .

Consider the family of morphisms (ρi)i∈Z defined by ρi := (−1)
i(i+1)

2 +
n(n−1)

2 · %i for
0 ≤ i ≤ n and by ρi = 0 otherwise. This defines an isomorphism of complexes
ρ = ρ• : K•(A, T ) −→ DA(K•(A, T ))[n], which coincides with the morphism of
complexes Θ(A, T ) as a thrilling calculation using (in particular the sign conventions
of) [11, Ex. 1.4, Rem. 1.9] shows.

By the following lemma this is easier to see if T is a regular sequence, which is
the only interesting case for us here.

Lemma 3.3. Assume that T is a regular sequence. Identify A ∼= HomA(A,A) as
usual. Then for any morphism in Db(VBA) between the Koszul complex and its
n-dual

ς : K•(A, T ) −→ DA(K•(A, T ))[n] ,

there exists an s ∈ A such that ς = s · Θ(A, T ) in Db(VBA). If s′ ∈ A is another
element with this property then s − s′ ∈ I. The morphism ς is an isomorphism in
Db(VBA) if and only if s+ I is a unit in the quotient ring A/I.

Proof. By assumption T = (T1, . . . , Tn) is a regular sequence and so the complex
K•(A, T ) and its dual DA(K•(A, T ))[n] are A-free resolutions of A/I by [7, Prop.
1.6.10 and Cor. 1.6.14]. The lemma follows because Θ(A, T ) is an isomorphism of
complexes. �

Remark 3.4. It is clear that the restriction ofK•(A, T ) becomes zero in the derived
category Db(VBA[T−1

j ]) for all 1 ≤ j ≤ n. Hence the complex K•(A, T ) has support

in the closed subset of Spec(A) defined by the ideal I =
∑n
j=1ATj . Therefore the

symmetric n-space
(
K•(A, T ) , Θ(A, T )

)
defines an element in[

K•(A, T ) , Θ(A, T )
]
∈ Wn

I (A) .

Proposition 3.5. Let 1 ≤ i ≤ n. Define the ideal Ii :=
∑
k 6=i

ATk of A. Then[
K•(A, T ) , Θ(A, T )

]
= 0 in Wn

Ii
(A).

Proof. The group Wn−1
Ii

(A) obviously contains the element

y := [K•(A, T1),Θ(A, T1)] ? . . . ? [K•(A, Ti−1),Θ(A, Ti−1)]

? [K•(A, Ti+1),Θ(A, Ti+1)] ? . . . ? [K•(A, Tn),Θ(A, Tn)] .

Since the product is skew-commutative, we have

[K•(A, Ti),Θ(A, Ti)] ? y = (−1)i−1
[
K•(A, T ) , Θ(A, T )

]
,

where we consider [K•(A, Ti),Θ(A, Ti)] as an element of W1(A). Therefore the
result follows from the observation that this element is indeed zero in W1(A).
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In fact, the complex c0(A) ∈ Db(VBA) is a Lagrangian (cf. [2], Sect. 2) of the
symmetric 1-space (K•(A, Ti),Θ(A, Ti)) :

c0(A) =

��

. . . // 0 //

��

0 //

��

A //

id

��

0 //

��

. . .

K•(A, Ti) = . . . // 0 // A
·Ti // A // 0 // . . .

and so [K•(A, Ti),Θ(A, Ti)] = 0 in W1(A). �

In the above proof, note that the class y ∈ Wn−1
Ii

(A) does not belong to Wn−1
I (A)

and thus the argument cannot be used to deduce that [K•(A, T ) , Θ(A, T ) ] = 0 in
Wn
I (A). On the contrary, see Theorem 8.2.

Corollary 3.6.
[
K•(A, T ) , Θ(A, T )

]
= 0 in Wn(A).

Proof. Clear since Wn
I (A) −→ Wn(A) factors via Wn

I1(A) for instance. �

Remark 3.7. Our “canonical” Koszul symmetric space [K•(A, T ) , Θ(A, T ) ] is
only canonical up to sign. In fact, its definition obviously depends on sign conven-
tions, as usual when working in derived categories, as well as some personal sign
choices like e.g. in the definition of the symmetric 1-form on the Koszul complex
of length one, at the beginning of this section. The reader should not consider
this sign question as crucial and can as well use his or her own set of conventions.
Applying Lemma 3.3 to A = Z[T1, . . . , Tn] and to T = (T1, . . . , Tn), as we shall do
below, we get A/I = Z and no other unit than ±1 can really enter the game.

Indeed, our main result Theorem 8.13 says that for any regular scheme X of
finite Krull dimension the total Witt ring Wtot(Un

X) is a graded Wtot(X)-algebra
with only one generator ε which satisfies the relation ε2 = 0 if n ≥ 2 and ε2 = 1
if n = 1, so, this result clearly does not depend on any choice yielding a sign
change in the definition of ε. A reader who prefers different sign conventions would
maybe get from our construction −ε as generator which obviously satisfies the
same relation as ε. Once again, these signs are not really relevant and we could
have written everything “up to sign” using Lemma 3.3 extensively. We only carry
the (hopefully) exact signs throughout the paper for sake of consistency.

4. Koszul cut in two

We want to “split” the Koszul complex of Section 3 into two pieces, dual to each
other. This is easy to understand but a little tricky to write. Recall our running
conventions of Section 1 that r + 4 q = n − 1, see (1), and that ` := [n2 ], see (2).
Now, more precisely, we want to define a symmetric r-pair

(
C•(A, T ) , Ξ(A, T )

)
,

such that there is an isometry

cone(C•(A, T ),Ξ(A, T )) '
(
K•(A, T ),Θ(A, T )

)
[−2q] .

We abbreviate the canonical form on K• := K•(A, T ) by Θ := Θ(A, T ), and set

S = S(A, T ) := Coker
(
K`+2(A, T )

d`+2(A,T )−−−−−−→ K`+1(A, T )
)
. (4)
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Let prS = prS(A,T ) : K`+1 −→ S = Coker d`+2 be the projection. Since
d`+1d`+2 = 0 there exists a unique morphism d̄`+1 = d̄`+1(A, T ) : S −→ K`,
such that

d`+1(A, T ) = d̄`+1(A, T ) · prS . (5)

For each j = 0, . . . , n, we have rankA(Kj) =
(
n
j

)
. In particular, if n = 2` + 1 is

odd, we have rankAK` = rankAK`+1 and life will be easy. When n = 2` is even,
K` has maximal (even) rank

(
2`
`

)
and we need some preparatory considerations. In

this case, the symmetric n-form Θ• : K•
'−→ DA(K•)[n] gives an isomorphism

Θ` : K` −→ K∨
` = HomA(K`, A)

which is symmetric if ` is even and skew-symmetric otherwise.

Lemma 4.1. If n = 2` is even, there exists two totally isotropic subspaces L and
M of (K`,Θ`), of same rank 1

2

(
2`
`

)
, such that K` = L⊕M and such that Θ` becomes

Θ` =

(
0 (−1)`λ∨ canM

λ 0

)
: K` = L⊕M −→ L∨ ⊕M∨ = K∨

` ,

where λ : L '−→M∨ is an isomorphism. Moreover, we have

(−1)`d∨`+1 · (prL)∨ · λ∨ · canM ·prM ·d`+1 + d∨`+1 · (prM )∨ · λ · prL ·d`+1 = 0 , (6)

where prL : K` −→ L and prM : K` −→M denote the projections.

Proof. Let e1, . . . , en be a basis of An and define L := e1 ∧
`−1∧

An. The space

M :=
⊕

2 ≤ i1 < i2 < . . . < i` ≤ n

A · ei1 ∧ ei2 ∧ . . . ∧ ei`

is obviously a complement of L in K` =
∧̀
An and both subspaces have rank(

2`−1
`−1

)
=
(
2`−1
`

)
= 1

2

(
2`
`

)
. Now use the description of Θ` given in Remark 3.2. Let

ω :
n∧
An

'−→ A be the isomorphism which sends e1 ∧ . . . ∧ en to 1 ∈ A. Then
Θ`(x)(y) = ±ω(x ∧ y). From this we easily get that both subspaces are totally
isotropic : for L it is because e1 ∧ e1 = 0 and for M it is because two subsets with `
elements in {2, . . . , n} must intersect. Since Θ` is a (−1)`-symmetric isomorphism,
its decomposition in L⊕M must be as claimed in the lemma. Equation (6) follows
from the fact that Θ : K• −→ DA(K•)[n] is a morphism of complexes. �

Definition 4.2. As the above discussion shows, we will have to distinguish the
cases where n is odd from those where n is even and the definition extends over
4.3 - 4.6 below. We shall consider a sign εn ∈ {−1, 1} which will be fixed later on,
see 6.2.

We start with n = 2`+ 1 odd.
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4.3. Case r = 0.

Then ` = 2q is even and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following sym-

metric 0-pair :

0 // Kn
dn //

��

· · · // K`+2
d`+2 //

��

K`+1
//

εnΘ`·d`+1

��

0 //

��

· · · // 0 //

��

0

0 // 0 // · · · // 0 // K∨
`+1

d∨`+2 // K∨
`+2

// · · ·
d∨n // K∨

n
// 0

deg ` deg 0 .

If T is a regular sequence then the Koszul complex K• is exact and so we have the
following quasi-isomorphism

C•(A, T ) =

p=p(A,T ) :=

��

0 // Kn
dn //

��

· · · // K`+2
d`+2 //

��

K`+1
//

prS

��

0 //

��
c0(S) = 0 // 0 // · · · // 0 // S // 0 //

deg ` deg 0 .

4.4. Case r = 2.

Then ` = 2q + 1 is odd and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following

symmetric 2-pair :

0 // Kn
dn //

��

· · · // K`+2
d`+2 //

��

K`+1
//

− εnΘ`·d`+1

��

0 //

��

· · · // 0 //

��

0

0 // 0 // · · · // 0 // K∨
`+1

d∨`+2 // K∨
`+2

// · · ·
d∨n // K∨

n
// 0

deg `+ 1 deg 1 .

As above if T is a regular sequence the projection prS : K`+1 −→ S induces a
quasi-isomorphism of complexes p = p(A, T ) : C•(A, T ) −→ c0(S)[1].

Now let n = 2` be even.

We fix two totally isotropic subspaces L and M of K` and an isomorphism
λ : L −→M∨ as in Lemma 4.1 and keep notations as there. We set

h := λ∨ · canM ·prM ·d`+1 : K`+1 −→ L∨ .

We now define the space
(
C•(A, T ) , Ξ(A, T )

)
for n even. It follows from equa-

tion (6) in Lemma 4.1 that both squares in the middle of the two diagrams below
commute and so the morphism Ξ(A, T ) is really a morphism of complexes.
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4.5. Case r = −1.

Then ` = 2q is even and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following sym-

metric (−1)-pair :

0 // Kn
dn //

��

· · · // K`+2
d`+2 //

��

K`+1
prL d`+1 //

εnh

��

L //

εnh
∨ canL

��

0 · · · //// 0 //

��

0

0 // 0 // · · · // 0 // L∨

−(prL d`+1)
∨

// K∨
`+1

−d∨`+2

// · · ·
−d∨n

// K∨
n

// 0

deg `− 1 deg 0 deg −1 .

If the sequence T is regular the homology of C•(A, T ) is not concentrated in one
degree (as in the case n odd) but there exists a “short” complex F•(A, T ) defined
as follows and which is quasi-isomorphic to C•(A, T ) :

C•(A, T ) =

p=p(A,T ) :=

��

· · · // K`+2
d`+2 //

��

K`+1
prL ·d`+1 //

prS

��

L //

=

��

0 //

��

· · ·

F•(A, T ) := · · · // 0 // S
prL ·d̄`+1

// L // 0 // · · ·

deg 0 deg −1 .

4.6. Case r = 1.

Then ` = 2q + 1 is odd and
(
C•(A, T ) , Ξ(A, T )

)
is defined to be the following

symmetric 1-pair :

0 // Kn
dn //

��

· · · // K`+2
d`+2 //

��

K`+1
prL d`+1 //

εnh

��

L //

−εnh∨ canL

��

0 · · · // 0 //

��

0

0 // 0 // · · · // 0 // L∨

−(prL d`+1)
∨

// K∨
`+1

−d∨`+2

// · · ·
−d∨n

// K∨
n

// 0

deg ` deg 1 deg 0 .

As in the case r = −1, when T is a regular sequence, we have a quasi-isomorphism
p = p(A, T ) : C•(A, T ) −→ F•(A, T ), where F•(A, T ) is now the complex

· · · // 0 // S
prL ·d̄`+1 // L // 0 // · · ·

deg 1 deg 0 .

Remark 4.7. Let f : A −→ B be a morphism of rings. The natural isomorphism

f∗(K•(A, T )) = K•(A, T )⊗A B
'−−→ K•(B, f(T ))

induces a natural isometry

f∗
(
K•(A, T ),Θ(A, T )

)
'
(
K•(B, f(T )),Θ(B, f(T ))

)
.
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Restricting this isomorphism above to the subcomplex C•(A, T ) we get a natural
isometry f∗

(
C•(A, T ) , Ξ(A, T )

)
'
(
C•(B, f(T )) , Ξ(B, f(T ))

)
.

Lemma 4.8. The mapping cone of the morphism Ξ(A, T ) is isomorphic (as a
complex) to K•(A, T )[−2q].

Proof. This is an easy direct computation, which we leave to the reader. It is clear
in the cases where n is odd and it requires Lemma 4.1 for n even. In all four cases,
we use the isomorphism Θ to replace the K∨

j by Kn−j for j ≥ `+ 1. �

5. The Koszul symmetric space K(n)

X over AnX

Let R be a ring. We apply the constructions of Section 3 to A := R[T1, . . . , Tn],
the polynomial ring in n variables over R, and to the sequence T := (T1, . . . , Tn).
The reader can think of R = Z or R = Z[1/2], since these are the important cases,
from which the rest will be deduced.

Definition 5.1. The Koszul symmetric n-space K(n)

R =
(
K(n)

R , Θ(n)

R

)
over AnR is the

symmetric n-space where K(n)

R := K•(A, T ) will be called the Koszul complex over
AnR and where the symmetric n-form Θ(n)

R := Θ(A, T ) is the one of Definition 3.1.

Remark 5.2. Pay attention : K(n)

R is a symmetric n-space defined over the ring
A = R [T1, . . . , Tn] and not over the ring R, as the notation might suggest.

It is clear that the Koszul symmetric n-space behaves well with respect to base-
change. More precise, let f : R −→ R′ be a morphism of rings and let

αf : R [T1, . . . , Tn] −→ R′ [T1, . . . , Tn]

be the obvious induced morphism. Then, by Remark 4.7 there is a natural isometry

α∗f (K
(n)

R ) '−→ K(n)

R′ .

In particular, K(n)

R is extended from K(n)

Z . This justifies the following extension of
Definition 5.1.

Definition 5.3. Let X be a scheme. We define the symmetric n-space

K(n)

X := α∗X(K(n)

Z )

where αX : AnX −→ AnZ is the base-change morphism, see 1.4. We call K(n)

X the
Koszul symmetric n-space over AnX . Like before, we denote the underlying complex
of free OAn

X
-modules and its symmetric n-form by

K(n)

X = α∗X
(
K(n)

Z
)

and Θ(n)

X = α∗X
(
Θ(n)

Z
)
.

Remark 5.4. It is obvious from the definition that for any morphism of schemes
f : Y −→ X we have an isometry α∗f

(
K(n)

X

)
' K(n)

Y over AnY

Definition 5.5. By Remark 3.4, the complex K(n)

X has support in the closed subset
AnX r Un

X of AnX which we identify with X in the following via the zero section of
the bundle AnX −→ X. Therefore, the symmetric n-space K(n)

X represents a Witt
class

κ(n)

X := [K(n)

X ] ∈ Wn
An

XrU n
X

(AnX) = Wn
X(AnX) .
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6. The half-Koszul symmetric space E(n)

X over Un
X

Definition 6.1. Let R be a ring. We now apply the splitting of Section 4 to the
space K(n)

R of Section 5. As above, we put A := R [T1, . . . , Tn] and T := (T1, . . . , Tn).
We define

C(n)

R := C•(A, T ) and Ξ(n)

R := Ξ(A, T )
as defined in 4.3 to 4.6. For any scheme X we define

C(n)

X := α∗X(C(n)

Z ) and Ξ(n)

X := α∗X(Ξ(n)

Z )

where αX : AnX −→ AnZ is the base-change morphism. This coincides with the above
in the affine case by Remark 4.7. For all n ∈ N, the symmetric r-pair (C(n)

X ,Ξ
(n)

X ) on
AnX will be denoted by C(n)

X .

6.2. The symmetric cone of C(n)

X .

Instead of calculating cone(C(n)

X ) directly (which is possible, but cumbersome)
we take full advantage of Lemma 3.3. More precisely, we use the fact that any
quasi-isomorphism K•(Z, T ) −→ DZ[T1,...,Tn](K•(Z, T ))[n] is equal to the symmetric
n-form ±Θ(n)

Z in Db(VBZ[T1,...,Tn]).
So let for a moment R = Z and A = Z[T1, . . . , Tn]. We abbreviate K• :=

K•(A, T ) and Θ = Θ(A, T ) . We get from Lemma 4.8 the following commutative
diagram (where D = DA)

C(n)

Z
Ξ

(n)
Z //

(−1)
r(r+1)

2 $
C(n)

Z��

D(C(n)

Z )[r] u //

=

��

K•[−2q] v // C(n)

Z [1]

(−1)
r(r+1)

2 $
C(n)

Z
[1]

��
DD(C(n)

Z )
D(Ξ

(n)
Z )[r]

// D(C(n)

Z )[r]
−D(v)[r+1]

// D(K•[−2q])[r + 1]
(−1)rD(u)[r+1]

// DD(C(n)

Z )[1]

(7)
whose rows are exact triangles for all n ∈ N (the bottom row is the dual of the
upper one, shifted r times). By the very basic properties of triangulated categories
there exists an isomorphism

ς : K•[−2q] −→ D(K•[−2q])[r + 1] =
(
D(K•)[n]

)
[−2q] ,

in Db(VBA) such that diagram (7) commutes. By Lemma 3.3 the isomorphism
ς is equal to ±Θ[−2q]. Replacing if necessary Ξ(n)

Z by −Ξ(n)

Z , i.e. replacing εn by
−εn in the definition of C(n)

R , we can assume that ς = Θ[−2q] for all n ∈ N, i.e.
(K•[−2q], ς) = K(n)

Z [−2q] for all n ∈ N.
We fix εn as explained above, namely εn is the unique element in {−1, 1}, such

that cone(C(n)

Z ) = K(n)

Z [−2q].

Remark 6.3. A straightforward but slightly cumbersome calculation shows that

εn = (−1)
n(n+1)

2 . (8)

Note that this depends on the sign choices made in 4.3–4.6. The latter have been
made such that Formula (8) is true.
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However as already said in Remark 3.7 these signs are not important for our
work. We only need the fact that there exists a symmetric r-pair C(n)

Z over AnZ, such
that coneC(n)

Z = K(n)

Z [−2q].

We can now calculate cone(C(n)

X ) for any scheme X and any n ∈ N. The pull-back
via the base-change morphism αX : AnX −→ AnZ of diagram (7) above is a cone
diagram for the symmetric r-form α∗X(C(n)

Z ). We have an isometry C(n)

X ' α∗X(C(n)

Z )
(cf. Remark 4.7) and so we get cone(C(n)

X ) ' α∗X(K(n)

Z [−2q]) ' α∗X(K(n)

Z )[−2q] (cf.
Lemma B.1 for the later isometry). We have proven :

Theorem 6.4. With this choice of εn, the cone of the symmetric pair C(n)

X is the
Koszul symmetric space shifted as follows :

cone(C(n)

X ) = K(n)

X [−2q] .

�

In particular, Ξ(n)

X |U n
X

is an isomorphism in Db(VBU n
X

) because the homology of
K•|U n

X
vanishes.

Definition 6.5. Let X be a scheme. The symmetric r-space

E(n)

X := C(n)

X |U n
X

will be called the half-Koszul space over the scheme X. Its Witt class is denoted by

ε(n)

X := [E(n)

X ] ∈ Wr(Un
X) .

The following is obvious (cf. Remark 4.7).

Lemma 6.6. Let f : Y −→ X be a morphism of schemes. Then there is a natural
isometry υ∗f (ε

(n)

X ) '−→ ε(n)

Y . �

7. The short symmetric space F(n)

X over Un
X

By the main result of [3] we know that E(n)

X is Witt equivalent to a space living
on a short complex, see 2.4. In fact, we will now see that E(n)

X is not only Witt
equivalent, but isometric to such a “short symmetric space”.

We use the notation of 4.3–4.6 with R = Z, i.e. A = Z[T1, . . . , Tn] is the polyno-
mial ring in n variables over Z, T = (T1, . . . , Tn), and K• = K•(A, T ) is the Koszul
complex of the sequence T over A. As in 4.3–4.6 we denote the differential of this
Koszul complex by d• and set

S = S(A, T ) = Coker
(
K`+2

d`+2−−−→ K`+1

)
.

Note that T is a regular sequence and so K• is a finite free resolution of Z ' A/I,
where I is the ideal generated by T . It follows that K•(A, T )|SpecA[T−1

i ] is a split
exact sequence and so

E (n)

Z := Coker
(
K`+2

d`+2−−−→ K`+1

)∣∣∣
U n

Z

= S
∣∣
U n

Z
' Ker d`

∣∣
U n

Z
(9)

is a locally free OU n
Z
-module of rank

∑̀
i=0

(−1)i
(
n
`−i
)

=
(
n−1
n−`−1

)
. Clearly the same

is true for the pull-back
E (n)

X := υ∗X(E (n)

Z ) , (10)



KOSZUL COMPLEXES AND THE PUNCTURED AFFINE SPACE 17

where υX : Un
X −→ Un

Z is induced by base change, see (3). Note that we have

E (n)

X = Coker
(
K(n)

X,`+2 −→ K(n)

X,`+1

)∣∣∣
U n

X

' Ker
(
K(n)

X,` −→ K(n)

X,`−1

)∣∣∣
U n

X

,

where K(n)

X = K(n)

X,• = α∗X(K(n)

Z ) (see Definition 5.3).

We consider now the case n odd and n even separately.

7.1. The space E(n)

X if n = 2`+ 1 is odd, i.e. r = 0 or r = 2.

Since the functor (−)∨ = HomA(− , A) is left exact we have S∨ = Ker
(
K∨
`+1

d∨`+2−−−→
K∨
`+2

)
and hence a well defined homomorphism

ϕ(n)

Z := (−1)` εn · θ` · d̄`+1

∣∣
U n

Z
: E (n)

Z −→ HomOU n
Z

(E (n)

Z ,OU n
Z
) = S∨

∣∣
U n

Z

which is (−1)`-symmetric, where d̄`+1 is the unique morphism K`+1 −→ S, such
that d`+1 = d̄`+1 · prS (cf. (5)). We set

(F (n)

Z , φ(n)

Z ) :=

{
c0(E (n)

Z , ϕ(n)

Z ) if ` is even

c0(E (n)

Z , ϕ(n)

Z )[1] if ` is odd.

This is a symmetric r-pair. Recall now from 4.3–4.6 that the projection prS :
K`+1 −→ S induces a quasi-isomorphism (hence an isomorphism in Db(VBA))

p|U n
Z

= p(Z, T )|U n
Z

: C(n)

Z
'−→ c0(E (n)

Z ) (respectively C(n)

Z
'−→ c0(E (n)

Z )[1]),

which is easily seen to be an isometry E(n)

Z
'−→ (F (n)

Z , φ(n)

Z ). It follows that φ(n)

Z is an
isomorphism and so (F (n)

Z , φ(n)

Z ) a symmetric r-space. In particular (E (n)

Z , ϕ(n)

Z ) is a
(−1)`-symmetric space over Un

Z . Applying the pull-back υ∗X we get :

(i) The pair

(E (n)

X , ϕ
(n)

X ) := υ∗X(E (n)

Z , ϕ(n)

Z )

is a (−1)`-symmetric space over Un
X .

(ii) The half Koszul space E(n)

X is isometric to the short symmetric r-space:

F(n)

X := (F (n)

X , φ
(n)

X ) := υ∗X(F (n)

Z , φ(n)

Z ) =

{
c0(E (n)

X , ϕ
(n)

X ) if ` is even

c0(E (n)

X , ϕ
(n)

X )[1] if ` is odd.

7.2. The space E(n)

X if n = 2` is even, i.e. r = −1 or r = 1.

We fix L,M ⊂ K` and λ : L '−→ M∨ as in Lemma 4.1 (with R = Z), and let
prL : K` −→ L and prM : K` −→ M be the respective projections. We denote
L := L|U n

Z
and prL := prL |U n

Z
: K`|U n

Z
−→ L.



18 PAUL BALMER AND STEFAN GILLE

On the complex F (n)

Z := F•(A, T )
∣∣
U n

Z
we have the following symmetric r-form:

F (n)

Z =

φ
(n)
Z :=

��

· · · // 0 //

��

E (n)

Z

prL ·d̄`+1|U n
Z //

εnh̄|U n
Z

��

L //

(−1)`εn(h̄|U n
Z

)∨ canL

��
DU n

Z
(F (n)

Z )[(−1)`+1] = · · · // 0 // L∨
(prL ·d̄`+1|U n

Z
)∨

// (E (n)

Z )∨ //

if r = −1 deg 0 deg −1

if r = 1 deg 1 deg 0

where h̄ = λ · canM ·prM ·d̄`+1. Since d`+1|U n
Z

= (d̄`+1 · prS)|U n
Z

we see that the
quasi-isomorphism p|U n

Z
: F (n)

Z
'−→ C(n)

Z is an isometry E(n)

Z
'−→ (F (n)

Z , φ(n)

Z ), and so φ(n)

Z
is an isomorphism in Db(VBZ). Therefore (F (n)

Z , φ(n)

Z ) is a symmetric r-space over
Un

Z . Applying the pull-back υ∗X we get :

The half Koszul space E(n)

X is isometric to the short symmetric r-space:

F(n)

X := (F (n)

X , φ
(n)

X ) := υ∗X(F (n)

Z , φ(n)

Z ) .

8. Witt groups of the punctured affine space

Recall the notations of Section 1, like formula (3), defining r ∈ {−1, 0, 1, 2} by
n = 4 q + r + 1. We begin with an easy application of triangular Witt theory :

Theorem 8.1. Let X be a regular scheme containing 1
2 . There exists a split short

exact sequence

0 // Wi(X)
σ∗X // Wi(Un

X)
∂ // Wi+1

X (AnX) // 0 ,

for all i ∈ Z, where ∂ is the connecting homomorphism of the localization Un
X ⊂ AnX .

This sequence is natural in X in the obvious way. Moreover, a left inverse to σ∗X is
given by γ∗ : Wi(Un

X) −→ Wi(X) for any X-point γ : X → Un
X , i.e. any morphism

γ : X → Un
X such that σX ◦ γ = idX .

Proof. Follows from the localization sequence [2] and homotopy invariance [4]. �

We want to apply “dévissage” to the relative groups Wi+1
X (AnX) and we will need

Theorem 8.2. Let X be a regular Z[1/2]-scheme of finite Krull dimension. Con-
sider the structure morphism πX : AnX −→ X. Then, the homomorphism

ϑ(n)

X : Wi−n(X) −→ Wi
X(AnX) , w 7−→ πX

∗(w) ? κ(n)

X

is an isomorphism for all i ∈ Z.

Proof. The affine case X = SpecR is [10, Thm. 9.3] and the global case follows
from this using the Mayer-Vietoris exact sequence [4, Thm. 2.6]. �
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Remark 8.3. We do not know whether ϑ(n)

X is an isomorphism for more general
schemes like e.g. regular schemes of infinite Krull dimension. The proof of [10,
Thm. 9.3] uses coherent Witt theory and therefore only applies to regular rings of
finite Krull dimension.

Theorem 8.4. Let X be a Z[1/2]-scheme. Let 1 ≤ i ≤ n be an integer and consider
the X-point γi : X → Un

X ⊂ AnX corresponding to Ti = 1 and Tj = 0 for all j 6= i.
If n ≥ 2, then the evaluation at this point of the Witt class ε(n)

X ∈ Wr(Un
X) of the

half-Koszul space is zero

γ∗i (ε
(n)

X ) = 0 in Wr(X) .

Proof. Consider the “same” point γi = (0, . . . , 0, 1, 0, . . . , 0) but over Z[1/2] instead
of X, that is, γi : Spec(Z[1/2]) −→ Un

Z[1/2]. We have a commutative diagram

Wr(Un
Z[1/2])

γ∗i //

υ∗X

��

Wr(Z[1/2])

��
Wr(Un

X)
γ∗i

// Wr(X)

with the obvious morphisms and we know from 6.6 that υ∗X(ε(n)

Z[1/2]) = ε(n)

X . There-
fore, it suffices to prove the result for Z[1/2].

If r 6= 0 this is trivially true because in this case Wr(Z[1/2]) = 0. In fact,
since Z[1/2] is a Dedekind domain, we have by [6, Thm. 10.1] that W−1(Z[1/2]) =

W2(Z[1/2]) = 0 and W1(Z[1/2]) ' Coker
(
W(Z[1/2])

P
∂p−−−→

⊕
p6=2

W(Z/Zp)
)
, where

∂p is a second residue homomorphism associated with the prime number p. But
this cokernel is also zero by the classical calculation of the Witt group of Q, cf. e.g.
[17, Thm. VI.6.11].

If r = 0, i.e. n = 2`+ 1 with ` 6= 0 even, this follows from the next lemma. �

Lemma 8.5. Let R be a ring and n = 2` + 1 with ` ≥ 2 even. Then γ∗i (E
(n)

R ) '
γ∗i (E

(n)

R , ϕ
(n)

R ) is trivial in W(R) ' W0(R).

Proof. After renumbering we may assume i = 1. Let K• = K•(A, T ) be the Koszul
complex of the regular sequence T = (T1, . . . , Tn) over A = R[T1, . . . , Tn], and
Θ = Θ(A, T ) : K•

'−→ DA(K•)[n] the canonical symmetric n-form. Recall that the
differential ds : Ks −→ Ks−1 is then given by

ei1 ∧ . . . ∧ eis 7−→
s∑
j=1

(−1)j−1Tij · ei1 ∧ . . . ∧ eij−1 ∧ eij+1 ∧ . . . ∧ eis ,

where e1, . . . , en constitute a basis of An. We denote (cf. 1.4) ιR the open immer-
sion Un

R ↪→ AnR. Then we have γ∗1 (E(n)

R ) = γ∗1 ι
∗
R(C(n)

R ) and K ′
• = γ∗1 ι

∗
R(K•) is the

Koszul complex K•(R, t) for the sequence t = (1, 0, . . . , 0) ⊂ R. We denote the
differential of this Koszul complex by d′. Note that this complex is split exact. The
isomorphism of complexes Θ′ := γ∗1 ι

∗
R(Θ) is a symmetric n-form on K ′

• and

(C ′,Ξ′) := γ∗1 ι
∗
R(C(n)

R )

is the symmetric 0-pair
(
C•(R, t) , Ξ(R, t)

)
, (see 4.3) which is in fact a symmetric

0-space since K ′
• = cone Ξ(R, t) is split exact.
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We give now a direct summand S′ of K ′
`+1, such that the projection K ′

`+1 −→ S′

induces a quasi-isomorphism C ′•
'−→ c0(S′), where c0 : VBR −→ Db(VBR) is the

natural embedding.
The elements vi = 1⊗ ei (i = 1, . . . , n) are a basis of R⊗A An = γ∗1 ι

∗
R(An), and

so the exterior products vi1 ∧ . . . ∧ vis (1 ≤ i1 < . . . < is ≤ n) are free generators
of K ′

s ' ∧sRn. The differential d′s acts on them as follows :

d′s(vi1 ∧ . . . ∧ vis) =

{
0 2 ≤ i1 < . . . < is ≤ n

vi2 ∧ . . . ∧ vis 1 = i1 < i2 < . . . < is ≤ n ,

therefore the R-module S′ := v1 ∧
( ∧̀

Rn
)
⊂ K ′

`+1 is isomorphic to Coker d′`+2.
Hence c0(S′) ' C ′• because C ′

• has non vanishing homology only in degree 0, C ′0 =
K ′
`+1 and C ′i = 0 for i < 0. We get an isometry c0(S′, ϕ′) ' (C ′,Ξ′), where

ϕ′ := εn(Θ′
l · d′`+1)|S′ .

Consider now the following free submodule M ′ := (v1 ∧ v2) ∧
( `−1∧

Rn
)

of S′.
We claim that M ′ is a totally isotropic subspace of (S′, ϕ′). From this the lemma
follows because rankM ′ = 1

2 rankS′ and so (S′, ϕ′) is hyperbolic by [1, I Thm. 4.6].
To see this we use the description of Θ given in Remark 3.2. Let ω : ∧nAn '−→ A

be as in this remark and ω′ := idR⊗ω. Then ω′(v1 ∧ . . . ∧ vn) = 1 and Θ′
`(x)(y) =

±ω′(x∧ y) for all x ∈ K ′
` and y ∈ K ′

`+1. If now x, y ∈M ′ then y = v1 ∧ v2 ∧ y′ and
d′`+1(x) = v2∧x′ for some x′, y′ ∈ ∧`−1Rn, and so ±ϕ′(x)(y) = ω′(d′`+1(x)∧ y) = 0
since v2 ∧ v2 = 0. �

Theorem 8.6. Let X be a regular Z[1/2]-scheme. The composition of the connect-
ing homomorphism with the 4-periodicity isomorphism :

Wr(Un
X) ∂ // Wr+1

X (AnX) τq

'
// Wn

X(AnX) ,

maps the Witt class ε(n)

X ∈ Wr(Un
X) of the half-Koszul space to the Witt class κ(n)

X ∈
Wn
X(AnX) of the Koszul space over AnX .

Proof. Recall that we always have n = 4 q + r + 1. The statement is a direct
consequence of Theorem 6.4, using the definition of the connecting homomorphism ∂
via the symmetric cone 2.10 and the fact that ε(n)

X =
[
C(n)

X |U n
X

]
by Definition 6.5. �

Theorem 8.7. Let X be a regular Z[1/2]-scheme. For all i ∈ Z, define the following
homomorphism :

ρ(n)

X : Wi−r(X) −→ Wi(Un
X) , w 7−→ σX

∗(w) ? ε(n)

X .

Then the following diagram commutes :

Wi−r(X)

ρ
(n)
X

��

Wi+1−n(X)

ϑ
(n)
X

'
��

τq

'
oo

Wi(Un
X)

∂ // Wi+1
X (AnX)

for all i ∈ Z, where the isomorphism ϑ(n)

X is the one of Theorem 8.2 and where τ is
the 4-periodicity isomorphism.
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Proof. Recall of course that r = n− 4q − 1 by (1). We have to show that

∂ρ(n)

X ([x]) = ϑ(n)

X ([x[−2q] ]) (11)

for all [x] ∈ Wi−r(X). Using the fact that σX : Un
X −→ SpecX factors as

Un
X

ιX−−→ AnX
πX−−→ SpecX ,

we get:
∂ρ(n)

X ([x]) = ∂(σ∗X(π∗X([x])) ? ε(n)

X )

= π∗X([x]) ? ∂(ε(n)

X ) by [11, Thm. 2.11]

= π∗X([x]) ? τ−q(κ(n)

X ) by Theorem 6.4.

But this is equal to the right hand side of (11) because:

ϑ(n)

X ([x[−2q] ]) = π∗X([x])[−2q] ? κ(n)

X by Lemma B.1

= π∗X([x]) ? τ−q(κ(n)

X ) by Lemma B.3.

�

Corollary 8.8. Let X be a regular Z[1/2]-scheme. We have an isomorphism

(σ∗X , ρ
(n)

X ) : Wi(X)⊕Wi−r(X) '−→ Wi(Un
X) .

for all i ∈ Z.

Proof. Comparing the split exact sequence of Theorem 8.1 and the obvious split
exact sequence 0 → Wi(X) −→ Wi(X) ⊕Wi−r(X) −→ Wi−r(X) → 0, it suffices
to note that ∂ · ρ(n)

X is an isomorphism, as follows from Theorem 8.7. �

To understand the ring structure on Wtot(Un
X), we need some properties of the

symmetric spaces K(n)

X and E(n)

X , which can be proven for non necessarily regular
schemes as well. The case n = 1, i.e. the “Laurent scheme” case, is well-known, so
we have to deal with n ≥ 2.

Theorem 8.9. Let X be a Z[1/2]-scheme. If n ≥ 2 then the symmetric r-space
E(n)

X is locally trivial, i.e. for any x ∈ Un
X we have [(E(n)

X )x] = 0 in Wr(OU n
X ,x

).

Proof. Define for all i ∈ {1, . . . , n} the principal open VnX(i) of AnX given by the
equation Ti 6= 0. Let J ⊆ {1, . . . , n} ⊂ N. We define

VnX(J) :=
⋃
j∈J

VnX(j) ⊆ Un
X = VnX({1, . . . , n})

and denote ιJ : VnX(J) −→ Un
X the corresponding open immersion. Since n ≥ 2, we

can cover Un
X with the open subschemes VnX(J) with |J | ≤ n− 1. So it suffices to

prove the following stronger result. �

Theorem 8.10. With the above notations, if |J | ≤ (n− 1) then [E(n)

X |Vn
X(J)] = 0 in

Wr(VnX(J)).

Proof. We easily reduce to the case X = Spec Z[1/2]. In this case we argue as
follows. For brevity we set R := Z[1/2].

For J empty, the result is trivial since VnR(J) = ∅ and its Witt group is zero. So
we assume that J 6= ∅. Consider the closed complement YR(J) := AnR r VnR(J) of
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VnR(J) ⊂ Un
R. Note that AnRrUn

R ⊂ YR(J). By Theorem 8.1, we have the following
commutative diagram with exact rows :

0 // Wr(R)
σ∗R //

=

��

Wr(Un
R) ∂ //

ι∗J

��

Wr+1
An

RrU n
R
(AnR) //

��

0

0 // Wr(R)
ι∗J σ

∗
R // Wr(VnR(J)) ∂ // Wr+1

YR(J)(A
n
R) // 0 .

We get from the right-hand commutative square, from Theorem 8.6, and from
Proposition 3.5 that ∂

(
ι∗J (ε(n)

R )
)

= 0. Therefore, by exactness of the above second
row, there exists a unique class w ∈ Wr(R) such that ι∗J (ε(n)

R ) = ι∗J (σ∗R(w)). In fact,
w = γ∗(ι∗J (ε(n)

R )) for any R-point γ : Spec(R) → VnR(J), which exists by assumption
J 6= ∅. Choose j ∈ J and define the R-point γ : Spec(R) → VnR(J) to be given
by Tj = 1 and Ti = 0 for i 6= j. Since w = γ∗(ι∗J (ε(n)

R )) = (ιJ · γ)∗(ε(n)

R )) and since
ιJ · γ : Spec(R) → Un

R is simply the R-point γj of Theorem 8.4, we conclude from
it that w = 0. Hence ι∗J (ε(n)

R ) = 0 as wanted. �

Remark 8.11. The statement of Theorem 8.9 is obviously not true for n = 1. The
proof fails for n = 1 because then VnX(J) = ∅ for any J such that |J | ≤ n− 1 = 0
and hence we cannot cover Un

X with these.

It follows from this theorem above and [5, Thm. 4.2] that if n ≥ 2 the space ε(n)

X

is nilpotent in Wtot(Un
X). We prove a more precise result.

Theorem 8.12. Let X be a Z[ 12 ]-scheme. Assume that n ≥ 2 then

(ε(n)

X )2 = ε(n)

X ? ε(n)

X = 0

in Wtot(Un
X). If n = 1 then (ε(n)

X )2 = 1 in Wtot(Un
X).

Proof. The case n = 1 is classical, so let n ≥ 2. Since α∗X : Wtot(Z[1/2]) −→
Wtot(X) is a morphism of graded rings (cf. [11, Thm. 3.2]) and α∗X(ε(n)

Z[1/2]) = ε(n)

X

(cf. Lemma 6.6) it is enough to prove this for the affine scheme X = Spec Z[1/2].
Because we assume n ≥ 2 there exists non-empty subsets J1, J2 ⊂ { 1, . . . , n }

with J1 6= J2 and J1 ∪ J2 = {1, . . . , n}. We define VnZ[1/2](Ji) ⊆ Un
Z[1/2] as in the

proof of Theorem 8.9 above and let YnZ[1/2](Ji) := Un
Z[1/2]\VnZ[1/2](Ji) be the comple-

ment (i = 1, 2). Note that J1∪J2 = {1, . . . , n} implies YnZ[1/2](J1)∩YnZ[1/2](J2) = ∅.
By Theorem 8.10 we know that [E(n)

Z[1/2]|Vn
Z[1/2](Ji)] = 0 for i = 1, 2. Therefore

by the localization sequence there exists xi ∈ Wr
Yn

Z[1/2](Ji)(U
n
Z[1/2]) with xi = ε(n)

Z[1/2]

in Wr(Un
Z[1/2]) for i = 1, 2, and so x1 ? x2 = (ε(n)

Z[1/2])
2 in W2r(Un

Z[1/2]). But the
space x1 ? x2 lives on a complex with support in YnZ[1/2](J1) ∩ YnZ[1/2](J2) = ∅ and
so (ε(n)

Z[1/2])
2 = 0. �

Denote Wtot(X)[ε] the graded skew polynomial ring in one variable ε of degree
r over the graded ring Wtot(X). Recall that this means that c · ε = (−1)r deg c(ε · c)
for a homogeneous element c ∈ Wtot(X). We have a homogeneous homomorphism
of graded rings given by

Wtot(X)[ε] −→ Wtot(Un
X)

m∑
i=0

ciε
i 7−→

m∑
i=0

σ∗X(ci) ? (ε(n)

X )i .
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Using this morphism we can restate Corollary 8.8 and Theorem 8.12 as follows

Theorem 8.13. Let X be a regular scheme of finite Krull dimension over Z[1/2].
Then we have an isomorphism of graded rings

if n ≥ 2 : Wtot(X)[ε]
/

(ε2)

if n = 1 : Wtot(X)[ε]
/

(ε2 − 1)

 '−→ Wtot(Un
X) .

Example 8.14. Let R be a regular ring of finite Krull dimension and

Σ2n−1
R := Spec R[T1, . . . , Tn, Y1, . . . , Yn]

/(
1 −

n∑
i=1

TiYi
)

the hyperbolic (2n− 1)-sphere over R. The R-algebra morphism

R[T1, . . . , Tn] −→ R[T1, . . . , Tn, Y1, . . . , Yn]
/(

1 −
n∑
i=1

TiYi
)

which maps Ti to Ti mod 1 −
∑
TiYi induces a flat morphism f : Σ2n−1

R −→ Un
R

whose fibers are affine spaces over the appropriate residue fields. Therefore by
strong homotopy invariance [9, Cor. 4.2] we get an isomorphism of graded Witt
rings f∗ : Wtot(Un

R) '−→ Wtot(Σ2n−1
R ). In particular Wtot(Σ2n−1

R ) is also a free
Wtot(R)-module with two generators. This has been proven by Karoubi [13] if R
is the field of complex numbers.

Note that if R is a regular domain and R(Σ2n−1
R ) is the function field of the

hyperbolic sphere then Theorem 8.9 implies that the natural morphism

W(Σ2n−1
R ) −→ W(R(Σ2n−1

R ))

is not injective.

9. Witt non-triviality of the (half) Koszul spaces

Theorem 9.1. Let X be a scheme which is not of equicharacteristic 2. Then
the Witt class of the symmetric n-space K(n)

X is non-trivial in the Witt group with
support Wn

X(AnX).

Proof. By assumption, there is a point x ∈ X whose residue field k(x) has charac-
teristic different from 2. By specialization at x (see Remark 5.4 for naturality), it
suffices to prove the result for the regular Z[1/2]-scheme X := Spec(k(x)). Here,
we apply Theorem 8.2 with i := n and w := 1 ∈ W0(X), the unit of the Witt
ring. �

Theorem 9.2. Let X be any scheme which is not of equicharacteristic 2. Then
the Witt class ε(n)

X of the symmetric r-space E(n)

X is not in the image of the natural
homomorphism Wr(AnX) −→ Wr(Un

X). In particular, E(n)

X cannot be extended to
the whole affine space AnX .

Proof. Again, by specialization at a point x with char(k(x)) 6= 2, we are reduced
to prove the result for the Z[1/2]-regular scheme X := Spec(k(x)). In this case,

the following composition vanishes : Wr(AnX)
ι∗X // Wr(Un

X) ∂ // Wr+1
X (AnX) .
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Here, the connecting homomorphism ∂ is, for instance, as in Theorem 8.6, where
we proved that ∂(ε(n)

X ) coincides with [K(n)

X ], up to 4-periodicity. So, ε(n)

X can not be
extended to AnX since [K(n)

X ] 6= 0 ∈ Wn
X(AnX) by Theorem 9.1. Note that we pass

via the regular case to use the connecting homomorphism ∂. �

Appendix A. The locally free module E (n)

X

We use the notation of the main part of the text. We want to prove:

Theorem A.1. Let X be a noetherian scheme and n ≥ 4. Then there does not
exist a locally free OAn

X
-module F , such that F

∣∣∣
U n

X

' E (n)

X . In particular E (n)

X is not

a free OU n
X
-module.

Let x ∈ X and Spec k(x)
f−→ X be the corresponding point. If there exists a

locally free OAn
X

-module F , such that F|U n
X
' E (n)

X , then

E (n)

k(x) ' υ∗f (E
(n)

X ) ' υ∗f (F|U n
X

) ' α∗f (F)|U n
k(x)

,

and so it is enough to show the theorem for X = SpecR with R a field. Similarly,
localizing R[T1, . . . , Tn] at the origin, we are reduced to the local case which follows
from the following result of commutative algebra.

Theorem A.2. Let (A,m) be a regular local ring, T = (T1, . . . , Tn) a regular

system of parameters (see [7, Def. 2.2.1]), and U =
n⋃
i=1

SpecATi
= SpecA \ {m} the

punctured spectrum of A. Assume that dimA = n ≥ 3. Then

Sj := Ker
(
Kj(A, T )

dj(A,T )−−−−−→ Kj−1(A, T )
)∣∣∣

U

cannot be extended to a free A-module if n > j ≥ 2.

Let in the following Ij = Ker dj(A, T ), i.e. Sj = Ij |U. Recall also that (−)∨ =
HomA(− , A). For the proof we need:

Proposition A.3. (i) Let j ≥ 2. Then the A-module Ij is reflexive, i.e. the
natural morphism can : Ij −→ I∨∨j is an isomorphism.

(ii) If M and N are finitely generated A-modules, such that M |U ' N |U, and
both M |U and N |U are locally free, then M∨ ' N∨.

Proof. By assumption Ij is a second syzygy and so (i) is a consequence of [8,
Thm. 3.6]. For (ii), by [12, Thm. 6.9.17] there exists c ≥ 0, such that the given
isomorphism M |U

'−→ N |U is the restriction of a morphism mcM −→ N . Therefore
we can assume that there exists g : M −→ N , such that g|U is an isomorphism, i.e.
Ker g and Coker g have finite length.

Now we use the following fact (see [7, Thm. 1.2.8]). Since dimA ≥ 2 and A
is regular (hence in particular Cohen-Macaulay) we have ExtiA(G,A) = 0 for any
finite length module G and i = 0, 1.

This and the exact sequences 0 // Ker g // M // Im g // 0 and

0 // Im g // N // Coker g // 0 give M∨ ' (Im g)∨ ' N∨. �
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Proof. (of Theorem A.2) Assume that P is a free A-module, such that P |U ' Sj .
We have Ij |U ' Sj , too, and so I∨j ' P∨ by Proposition A.3 (ii). Part (i) of this
proposition tells us that Ij is reflexive and hence Ij ' I∨∨j ' P∨∨ is free. But this
is impossible, because TorAn−j(Ij , A/m) ' TorAn (A/m, A/m) ' A/m 6= 0 (note
that we need here j < n = dimA). We are done. �

Appendix B. Product and 4-periodicity

We have used in this work the fact that the product commutes with the trans-
lation. This has not been established in [11]. For the sake of completeness we give
here a proof but refer to loc. cit. for unexplained notations and definitions.

To start with let A(0) = (A,DA, δA, $A) and B(0) = (B,DB, δB, $B) be trian-
gulated categories with δA- respectively δB-exact duality (like e.g. Db(VBX) with
the usual 1-exact duality as in the main part of this work). We denote the shift
functor in these triangulated categories by ΣA respectively ΣB (to distinguish we
do not use X 7→ X[1]). A symmetric i-space in A(0) is a pair (X,ψ) consisting of

an object X ∈ A and a symmetric i-form X
ψ−→ ΣiADAX which is an isomorphism,

the symmetry of an i-form reads ΣiADA(ψ) · $A
X = (−1)

i(i+1)
2 δiA · ψ. As in the

case of derived categories if (X,ψ) is a symmetric i-form then (Σ2
AX,Σ

2
A(ψ)) is a

symmetric (i+ 4)-form.
Let (F, ρ) : A(0) −→ B(0) be a duality preserving functor, i.e. ρ : FDA

'−→ DBF is
an isomorphism of functors satisfying some compatibility axioms. We will only use
the following. Since F is a covariant exact functor between triangulated categories
there exists a family of isomorphisms of functors θ(i) : FΣiA

'−→ ΣiBF (i ∈ Z) which
are related by the following formulas :

θ(i+j) = ΣiB(θ(j)) · θ(i)
Σj
A

(12)

(i, j ∈ Z). Then we have

DBΣ−1
B (θ(1)

Σ−1
A

) · ρΣ−1
A

= (δAδB) · ΣB(ρ) · θ(1)DA (13)

(cf. loc. cit. Definition 1.8). This axioms are made such that if (X,ψ) is a symmetric
i-space in A(0) then (F, ρ)∗(X,ψ) :=

(
FX , (δAδB)i ΣiB(ρX) · θ(i)DAX · F (ψ)

)
is a

symmetric i-space in B(0).

Lemma B.1. Let (X,ψ) be a symmetric i-space in A. Then there is an isometry

(F, ρ)∗(Σ2
AX,Σ

2
A(ψ)) '−→ Σ2

B((F, ρ)∗(X,ψ)) .

Proof. We claim that θ(2)X : FΣ2
AX

'−→ Σ2
BFX is an isometry, i.e. we have to show

(δAδB)i+4 Σi+4
B (ρΣ2

AX
) · θ(i+4)

DAΣ2
AX

· FΣ2
A(ψ)

= (δAδB)i Σi+4
B DB(θ(2)X ) · Σi+2

B (ρX) · Σ2
B(θ(i)DAX) · Σ2

BF (ψ) · θ(2)X

(14)

We observe first that Σ2
BF (ψ) · θ(2)X = θ

(2)

Σi
ADAX

· FΣ2
A(ψ) since θ(2) is a natural

transformation. By using (12) three times we get (recall that by definition ΣADA =
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DAΣ−1
A ):

θ
(i+4)

DAΣ2
AX

= Σi+3
B (θ(1)DAΣ2

AX
) · Σi+2

B (θ(1)DAΣAX
) · Σ2

B(θ(i)DAX) · θ(2)
Σi
ADAX

and so (14) is equivalent to

Σi+4
B (ρΣ2

AX
) · Σi+3

B (θ(1)DAΣ2
AX

) · Σi+2
B (θ(1)DAΣAX

) = Σi+4
B DB(θ(2)X ) · Σi+2

B (ρX) .

Hence the result follows from the following calculation:

Σi+3
B (ΣB(ρΣ2

AX
) · θ(1)DAΣ2

AX
) · Σi+2

B (θ(1)DAΣAX
)

= (δAδA) Σi+3
B (DBΣ−1

B (θ(1)ΣAX
) · ρΣAX) · Σi+2

B (θ(1)DAΣAX
) by Eq. (13)

= (δAδA) Σi+4
B (DBθ(1)ΣAX

) · Σi+2
B (ΣB(ρΣAX) · θ(1)DAΣAX

)

= Σi+4
B DB(ΣBθ

(1)
X · θ(1)ΣAX

) · Σi+2
B (ρX) by Eq. (13)

= Σi+4
B DB(θ(2)X ) · Σi+2

B (ρX)

since θ(2)X = ΣBθ
(1)
X · θ(1)ΣAX

by Eq. (12). �

Assume now we have a third triangulated category with duality, say C(0) =
(C,DC , δC , $C), and a dualizing pairing (loc. cit. Definition 1.11)

� : A(0) × B(0) −→ C(0) .

Example B.2. Let X be a scheme and Z ⊆ X a closed subset. Then the (derived)
tensor product

⊗OX
: Db(VBX) × Db

Z(VBX) −→ Db
Z(VBX)

is a dualizing pairing. Note that in this case δA = δB = δC = 1.

Let (X,ψ) be a symmetric i-space in A(0) and (Y, φ) a symmetric j-space in
B(0). The left product (X,ψ) ?l (Y, φ) is then defined by considering X � − as
duality preserving functor with the aid of a duality transformation L(ψ) which
depends on ψ, i.e. the left product (X,ψ) ?l (Y, φ) of these spaces is by definition
(X � − ,L(ψ))∗(Y, φ). The right product ?r is defined analogous by making the
functor − � Y duality preserving using the symmetric j-form φ. Both products
are related by the following isometry:

(X,ψ) ?l (Y, φ) ' (δAδC)j · (δBδC)i · (−1)ij ·
(
(X,ψ) ?r (Y, φ)

)
. (15)

(loc. cit. Theorem 2.9). From this we easily deduce

Lemma B.3. There is an isometry

(Σ2
AX,Σ

2
A(ψ)) ?l (Y, φ) ' (X,ψ) ?l (Σ2

BY,Σ
2
B(φ)) ,

and the same is true for the right product.

Proof. From Lemma B.1 we get isometries (X,ψ) ?l (Σ2
BY,Σ

2
B(φ)) ' Σ2

C
(
(X,ψ) ?l

(Y, φ)
)

and (Σ2
AX,Σ

2
A(ψ))?r (Y, φ) ' Σ2

C
(
(X,ψ)?r (Y, φ)

)
. Hence the lemma follows

by applying (15) twice. �
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