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Abstract. We transpose Rickard’s construction of idempotent representa-

tions to the general context of tensor triangulated categories. We connect our
construction to the Telescope Conjecture and prove that the latter is of local

nature. As an illustration, we extend the affine Telescope Theorem of Neeman

to arbitrary noetherian schemes. We also develop supports for non-compact
objects.
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Introduction

Tensor triangular geometry is the study of tensor triangulated categories, in
algebraic geometry, homotopy theory, modular representation theory and beyond;
see [2, 3]. This abstract framework allows the transposition of techniques and ideas
from one area to another. For instance, the basic idea of gluing has been abstracted
from usual algebraic geometry to tensor triangular geometry in [7] and then applied
to modular representation theory in [6] and [4].

In the present paper, we proceed in the opposite direction : We extend a tech-
nique from modular representation theory, namely idempotent representations in
the sense of Rickard [33], to the general framework of tensor triangulated categories
and give an application in algebraic geometry.

But let us first remind the reader of Rickard’s insight [33].

Let G be a finite group and k a field. Consider VG
def.
= Proj(H•(G, k)) the

associated projective support variety, see [8, Vol. II, Chap. 5]. For every closed
subset W ⊂ VG , Rickard tells us how to construct two possibly infinite-dimensional
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kG-modules, E(W ) and F (W ), which are tensor idempotents, E(W ) ⊗ E(W ) '
E(W ) and F (W ) ⊗ F (W ) ' F (W ), modulo projective modules. More precisely
he constructs an exact triangle E(W ) → k → F (W ) → ΣE(W ) in the stable
module category Stab(kG) = kG – Mod

/
kG – Proj, such that tensoring with F (W )

realizes localization away from W . The latter means that the functor F (W )⊗− :
Stab(kG)−→ Stab(kG) is the Bousfield localization of Stab(kG) with respect to
the smashing subcategory StabW (kG) := 〈stabW (kG)〉. Here, 〈stabW (kG)〉 is the
localizing subcategory of Stab(kG) generated by the thick ⊗-ideal subcategory

(0.1) stabW (kG) :=
{
M ∈ stab(kG)

∣∣VG(M) ⊂W
}

of those finite dimensional representations whose projective support variety VG(M)
is contained in our chosen closed subset W . This interplay between the subcategory
stab(kG) of compact objects (finite dimensional representations) and the big tensor
triangulated category Stab(kG) is a central theme in this whole subject.

Rickard proves E(W1∩W2) ' E(W1)⊗E(W2) and F (W1∪W2) ' F (W1)⊗F (W2)
and he constructs two Mayer-Vietoris exact triangles in Stab(kG)

E(W1 ∩W2) // E(W1)⊕ E(W2) // E(W1 ∪W2) // ΣE(W1 ∩W2)

F (W1 ∩W2) // F (W1)⊕ F (W2) // F (W1 ∪W2) // ΣF (W1 ∩W2) .

All this is very useful in modular representation theory.

As Rickard already indicates, his techniques are reminiscent of the topologists’
homotopy theoretic methods involved in Brown representability. Nowadays, it is
well known how such techniques can be generalized to big enough triangulated
categories T, e.g. compactly generated ones; see Hovey-Palmieri-Strickland [22] or
Neeman [31], for instance. For us, T will be a compactly generated tensor triangu-
lated category, in the precise sense of Hypotheses 1.1 below. We denote by Tc ⊂ T

the subcategory of compact objects. For example, (Stab(kG))c = stab(kG).
The above is classical by now. Nonetheless, until recently, one essential ingredient

in Rickard’s work did not have a clear generalization to any compactly generated
tensor triangulated category T : It is the projective support variety VG. This is a
fundamental question since VG contains the closed subsets W which parametrize
Rickard’s idempotents. Similarly, the above Mayer-Vietoris results involve some
ambient space in which to take union and intersection of W1 and W2. In fact,
in the above construction, the only place where VG plays an essential role is in
the definition of the thick ideal stabW (kG) of compact objects, as in (0.1) above.
In this definition, one could actually use any “support datum” (Rem. 5.3) instead
of VG(−) and still obtain thick ideals. See more on this in Remark 5.26 below.
However, assuming we want the best theory right away, we should try to use a
notion of support which catches all thick ideals of compact objects immediately.
This is exactly what the spectrum of [2] does for us.

Recall from [2] that for a tensor triangulated category K, like here K = Tc, the
spectrum Spc(K) is a topological space in which every object x ∈ K has a support
supp(x) ⊂ Spc(K) and such that one can parametrize all thick ideals in K via
W 7→ KW :=

{
x ∈ K

∣∣ supp(x) ⊂W
}

, where W ⊂ Spc(K) runs through so-called
Thomason subsets (Def. 5.7). In the example of T = Stab(kG), we have K = Tc =
stab(kG) and its spectrum coincides with VG in such a way that supp(M) = VG(M),
see [2, Cor. 5.10]. (And VG is noetherian, so every closed subset is Thomason.)
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In short, a conceptual generalization of Rickard’s framework to all possible T is
provided by tensor triangular geometry of Tc, following [2].

Using our approach, we then prove the complete generalization of Rickard’s
results to any compactly generated tensor triangulated category T (as in Hyp. 1.1) :
For every Thomason subset W ⊂ Spc(Tc) we construct two ⊗-idempotents e(W ) '
e(W ) ⊗ e(W ) and f(W ) ' f(W ) ⊗ f(W ) in T, together with an exact triangle
e(W ) → 1 → f(W ) → Σe(W ), such that f(W ) ⊗ − : T−→T realizes Bousfield
localization with respect to TW := 〈(Tc)W 〉, i.e. localization away from W . (Here
1 ∈ T is the unit of the tensor structure on T.) This is done in Section 5. We
establish generalized Mayer-Vietoris triangles in Theorem 5.18.

There are as many applications of this construction as there are compactly gen-
erated tensor triangulated categories T. This goes even beyond the areas mentioned
above and does apply to motivic theory or noncommutative topology (equivariant
KK-theory of C∗-algebras) for instance; see Dell’Ambrogio [19]. We do not pursue
this direction here. Instead, we connect our construction to the so-called Telescope
Conjecture, which is the property that every smashing subcategory of T be gen-
erated from its compact part; see Def. 4.2. Some categories T have this property,
some don’t. It is notoriously unclear whether the stable homotopy category T = SH
of topological spectra has the Telescope property or not. See Remark 4.3.

Here, we prove that the Telescope property is of local nature relatively to open
covers of Spc(Tc); see a precise statement in Theorem 6.6. As a corollary, we
give a quick proof that the Telescope property holds for the derived category of a
noetherian scheme (Alonso et al. [1, Thm. 5.8]) by simply reducing it to the affine
case proven by Neeman [30]; see Corollary 6.8.

Another thing one can do with tensor idempotents is create residue objects
κ(P) ∈ T for P ∈ Spc(Tc) in the spectrum of the compact part of T. This is
done in Section 7 and allows the construction of support for big objects, i.e. subsets
Supp(t) ⊂ Spc(Tc) for any t ∈ T. This generalizes the first definition of supports
VG(M) for possibly non finite-dimensional representations M , given in [9].

The structure of the paper should now be clear from the table of contents.

1. All hypotheses on the table

1.1. Hypotheses. Throughout the paper, T stands for a (rigidly-) compactly gen-
erated tensor triangulated category. The poetically inclined reader might prefer to
call T a “unital algebraic stable homotopy category”, as in [22]1. We prefer the
above somewhat more explicit terminology. We denote by

K = Tc

the subcategory of rigid and compact objects. We now unfold the details.

We assume familiarity with the notion of triangulated category and we denote
by Σ : T → T the suspension functor. We assume that T has arbitrary (small)
coproducts ti∈Iti. An object c ∈ T is compact if, for every set {ti}i∈I of objects
of T, the natural map ⊕i∈IHom(c, ti)→ Hom(c,ti∈Iti) is an isomorphism. In [22],
compact objects are called small. We assume that T is compactly generated, that is,

1The Brown representability hypothesis [22, Def. 1.1.4. (e)] is redundant by [31, Thm. 8.3.3].
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the subcategory of compact objects K = Tc is essentially small (has a set of isomor-
phism classes) and, most importantly, if an object t ∈ T is such that Hom(c, t) = 0
for every c ∈ K then t = 0. See also Remark 2.3 below.

Finally, let us discuss tensor and rigidity. We assume that T admits a closed
symmetric monoidal structure (see for instance [22, App. A])

⊗ : T × T−→T .

Again, we remind the reader. We have natural isomorphisms x⊗ y ∼= y ⊗ x, which
for our present purposes we may treat as identities, and a unit 1 for the tensor
product: 1⊗x ∼= x. Moreover, there exists an adjoint hom : T

op×T−→T such that
Hom(x⊗ y, z) ∼= Hom(x, hom(y, z)). Both functors, ⊗ and hom, are also assumed
exact in each variable. An object x ∈ T is called rigid (or strongly dualizable) if for
every y ∈ T, the natural map hom(x,1)⊗y → hom(x, y) is an isomorphism. We also
require that 1 is compact and that every compact object is rigid, which is equivalent
to say that compact objects coincide with rigid objects; see [22, Thm. 2.1.3 (d)]. So,
the subcategory K of rigid-compact objects is essentially small, rigid (meaning that
all its objects are so) and ⊗-triangulated.

1.2. Examples. We refer to [22, Ex. 1.2.3] for justifications.

(1) T = SH, the stable homotopy category of topological spectra. Here K = SHfin,
the stable homotopy category of finite spectra. See [28] for details.

(2) T = D(R – Mod), the unbounded derived category of a commutative ring R

(see [26, Example 5.8]). Here K = Kb(R – proj). More generally T = D(X) :=
DQcoh(OX), the derived category of unbounded complexes of OX -modules with
quasi-coherent homology over a quasi-compact and quasi-separated scheme X.
(Quasi-separated means that quasi-compact open subsets are stable under pair-
wise intersection, i.e. form an open basis. This is equivalent to say that X
is spectral, see Rem. 5.11.) By Bondal and van den Bergh [14, Thm. 3.1.1],

K = Tc is the category Dperf(X) of perfect complexes over X, i.e. complexes
which are locally quasi-isomorphic to bounded complexes of vector bundles;
see SGA 6 [12] or [36]. It is shown in [13, Cor. 5.5] that the natural functor
D(Qcoh(X)) → D(X) is an equivalence when X is moreover separated, which
the reader can assume if D(Qcoh(X)) sounds more familiar. The tensor struc-
ture is standard; detailed references are collected in [17, § 1] for instance.

(3) T = Stab(kG), the stable category of all kG-modules, for G a finite group
(scheme). Here K = stab(kG), the stable category of finite dimensional kG-
modules.

2. Bousfield localization and smashing ideals

2.1. Definition. Recall that a triangulated subcategory S ⊂ T is called thick if it
is stable under taking direct summands. It is called localizing if it is stable under
arbitrary coproducts. It is colocalizing if it is stable under arbitrary products.
(Co)localizing subcategories are thick. Finally, S is called ⊗-ideal if T ⊗ S ⊂ S.

2.2. Notation. If E is a class of objects of T, we will denote by 〈E〉 the smallest
localizing triangulated subcategory of T which contains all objects of E. Similarly
〈E〉⊗ for the smallest localizing ⊗-ideal.
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2.3. Remark. In Hypotheses 1.1, the fact that T is compactly generated can be
expressed as 〈K〉 = T. Consequently, if E ⊂ T satisfies K⊗E ⊂ 〈E〉 (typically E ⊂ K

⊗-ideal inside K, that is K⊗ E ⊂ E), then 〈E〉 is ⊗-ideal in T and 〈E〉 = 〈E〉⊗.

We now recall standard results about localization of triangulated categories.
Most of this material can be found in the now classical reference [31] or in the
monograph [22]. For a recent comparative survey, see Krause [26].

Recall the Verdier localization q : T−→T/S of a triangulated category T by a
thick subcategory S, see [31, § 2.1]. One pitfall with Verdier’s construction is that
the quotient T/S, in which morphisms are equivalence classes of fractions, might
have proper classes of morphisms, not sets, i.e. T/S might be a “large” category.
Sometimes, the functor q : T−→T/S has an adjoint, which is automatically faithful,
hence realizes T/S as a subcategory of T, avoiding the above pitfall. This happens
in Bousfield localization, as we now recall.

2.4. Definition. A Bousfield localization functor on T is a pair (L, λ) where L :
T → T is an exact functor and λ : IdT → L is a natural transformation such
that Lλ : L → L2 is an isomorphism and Lλ = λL. A morphism of localization
functors (L, λ) → (L′, λ′) on the same category T is a natural transformation ` :
L → L′ such that ` ◦ λ = λ′. For a localization functor (L, λ), we have Im(L) =
{t ∈ T |λt is an isomorphism}. (For a functor F , we denote by Im(F ) its essential
image.) These are often called L-local objects.

The dual notion of colocalization functor is also important for us : (Γ, γ) is a
colocalization functor on T if (Γ

op

, γ
op

) is a localization functor on T
op

, etc.

2.5. Definition. If A,B are classes of objects in T we write A⊥B if Hom(a, b) = 0
for all a ∈ A and b ∈ B. For a class C of objects of T we consider its right
orthogonal C⊥ = {t ∈ T |Hom(c, t) = 0 for all c ∈ C} and its left orthogonal ⊥C =
{t ∈ T |Hom(t, c) = 0 for all c ∈ C}. Both ⊥C and C⊥ are thick subcategories of T.
Moreover, ⊥C is always localizing and C⊥ is always colocalizing.

2.6. Theorem (Bousfield localization). Let T be a triangulated category and S be
a thick subcategory. Then the following statements are equivalent :

(i) There exists a localization functor (L, λ) : T → T with S = Ker(L).
(ii) There exists a colocalization functor (Γ, γ) : T → T with S = Im(Γ).

(iii) Each t ∈ T fits in an exact triangle t′ → t→ t′′ → Σt′ with t′ ∈ S and t′′ ∈ S⊥.
(iv) The Verdier quotient functor q : T → T/S exists and has a right adjoint.
(v) The composition S⊥ → T → T/S is an equivalence.

Assume that (i)–(v) hold. Then S⊥ = Im(L) = Ker(Γ) and ⊥(S⊥) = S. Moreover,
the triangle in (iii) is functorial in t and is the unique one with these properties
(up to unique isomorphism of triangles being the identity on t). We denote it by

(2.7) ∆S(t) :=
(

ΓS(t)→ t→ LS(t)→ ΣΓS(t)
)
.

Proof. See [31, Chap. 9] or [22, Chap. 3] or [26, § 4] (for this and even more). �

2.8. Definition. A localizing subcategory S satisfying the equivalent conditions of
Thm. 2.6 is called a Bousfield subcategory of T. The localization exact triangle for S
will refer to ∆S of (2.7) above, featuring the (co)localization functors ΓS and LS.
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2.9. Remark. If S ⊂ S′ are Bousfield subcategories of T then there is a unique
morphism of triangles (ε, id, ϕ) : ∆S → ∆S′ . In the following (solid) diagram

ΓS(t)
γ //

ε
��

t
λ // LS(t) //

ϕ
��

ΣΓS(t)

Σε��
ΓS′(t)

γ′ // t
λ′ // LS′(t) // ΣΓS′(t),

we have λ′ ◦ γ ∈ Hom(ΓS(t), LS′(t)) = 0 since ΓS(t) ∈ S ⊂ S′ ⊥ (S′)
⊥ 3 LS′(t).

Using standard properties of exact triangles, we get the existence of ε such that
γ′ε = γ, and then of ϕ making the diagram commute. These ε and ϕ are unique
since another choice would differ by a map in Hom(ΣΓS(t), LS′(t)) = 0. This yields
a unique morphism of localization functors ϕ : LS → LS′ .

The equivalence T/S ∼= S⊥ of Thm. 2.6 (v) allows us to discuss T/S inside T,
without calculus of fractions. As an interlude, we illustrate this with the gluing
technique, originally treated without Bousfield localization in [7].

2.10. Definition (See [7, Def. 2.1]). We say that two thick subcategories S1, S2 of a
triangulated category T are in formal Mayer-Vietoris situation if S1⊥S2 and S2⊥S1,
i.e. Hom(S1, S2) = Hom(S2, S1) = 0. Then S1 ∩ S2 = 0. We denote by S1 ⊕ S2 the
thick subcategory whose objects are {t ∈ T | t ' s1 ⊕ s2 for some s1 ∈ S1, s2 ∈ S2}.
We want to express the weak cartesian nature of the following diagram :

T //

��

T/S1

��
T/S2

// T
/

(S1 ⊕ S2) .

2.11. Theorem (Gluing of objects [7, Thm. 4.3]). Let T, S1 and S2 be as above.
Set S12 = S1 ⊕ S2. Assume that T/Si has small Hom sets, for i ∈ {1, 2, 12} (e.g.

Si Bousfield). Let t1 ∈ T/S1 and t2 ∈ T/S2 be two objects and σ : t1
∼→ t2 an

isomorphism in T/S12. Then there exists an object t ∈ T and isomorphisms t ' ti
in T/Si for i = 1, 2, compatible with σ in T/S12. The object t so obtained is unique
up to possibly non unique isomorphism and is called a gluing of t1 and t2 along σ.

Alternative proof in the Bousfield case : For i ∈ {1, 2, 12}, we further suppose that
Si is Bousfield (Def. 2.8) with localization functors Li : T → T. By Thm. 2.6 (vi),
we can identify T/Si with S⊥i = Im(Li) and view the isomorphism σ : t1 → t2 in

T/S12 as an isomorphism σ′ : L12(t1)
∼→ L12(t2) in T. By Rem. 2.9, the inclusion

Si ⊂ S12 induces morphisms of localizations ϕ12,j : Lj → L12 for j = 1, 2. Now
form a weak pull-back in T of ϕ12,2 and σ′ ◦ ϕ12,1 as follows

t
α1 //____

α2

���
�
�

y

L1(t1)

��

ϕ12,1

**TTTTTT

L12(t1)

σ′

'
ttjjjjjj

L2(t2)
ϕ12,2

// L12(t2)

From this construction, it is an exercise to see that t has the properties of a gluing.
Compare [6, § 6]. The desired isomorphisms correspond to L1(α1) and L2(α2). �

Bousfield localization also yields an alternative proof of the following :
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2.12. Theorem (Gluing of morphisms [7, Thm. 3.5]). Under the same hypotheses as
Thm. 2.11, one can also glue morphisms in T : Given objects s, t ∈ T and morphisms
fi : s → t in T/Si for i = 1, 2, which agree in T/S12, there is a (non necessarily
unique) morphism f : s→ t in T whose image in T/Si is equal to fi , for i = 1, 2.

So far, we have not used the tensor structure on T. Here it comes.

2.13. Theorem (Smashing localization). Let (T,⊗,1) be a ⊗-triangulated category

and let S be a Bousfield subcategory (Def. 2.8). Let ∆S : ΓS

γ // Id
λ // LS

// ΣΓS

be the localization triangle for S, see (2.7). Now, suppose in addition that S is a
⊗-ideal (Def. 2.1). Then the following conditions are equivalent:

(i) The subcategory S⊥ is also a ⊗-ideal.
(ii) There is an isomorphism of functors LS ' LS(1)⊗−.

(iii) There is an isomorphism of functors ∆S ' ∆S(1)⊗−.

Proof. This is also standard. We drop the subscripts S from the notation. Assume
that (i) holds. For every t in T consider the exact triangle ∆(1)⊗ t :

Γ(1)⊗ t−→ t−→L(1)⊗ t−→Σ Γ(1)⊗ t.
Since S is ⊗-ideal, we have Γ(1) ⊗ t ∈ S. Since we assume S⊥ ⊗-ideal, we also
have L(1) ⊗ t ∈ S⊥. By uniqueness of the triangle ∆(t) we get (iii). Clearly
(iii)⇒(ii). To show (ii)⇒(i), let t ∈ S⊥ = Im(L) and t′ ∈ T arbitrary. Then
t⊗ t′ ' L(t)⊗ t′ ' L(1)⊗ t⊗ t′ ' L(t⊗ t′) hence t⊗ t′ ∈ Im(L) = S⊥. �

2.14. Remark. The isomorphisms in Thm. 2.13 (ii)-(iii) are unique, if they are the
identity morphism on the t in the second term of ∆S(t). We leave this to the reader.

2.15. Definition. A ⊗-ideal Bousfield subcategory S of T is called a smashing ideal
if S satisfies the equivalent conditions of Theorem 2.13. We will denote by S(T) the
class of all smashing ideals of T and order it by inclusion ⊂.

2.16. Remark. Under Hypotheses 1.1, this S(T) is indeed a set by Krause [25,
Thm. 4.9]. Also, the notion of smashing subcategory is sometimes formulated with-
out ⊗-structure, by asking the localization functor LS to preserve arbitrary coprod-
ucts, see [26, Prop. 5.5.1]. These two notions coincide here, see [22, Def. 3.3.2].

2.17. Remark. Let T be a ⊗-triangulated category and S be a smashing ideal of T.
Then there is an inclusion-preserving bijection between the smashing ideals of T

which contain S and the smashing ideals of T/S, given by S′ 7→ S′/S ⊂ T/S.

3. Tensor idempotents

Instead of smashing ideals (Def. 2.15) we can equivalently consider⊗-idempotents.

3.1. Proposition. Let T be a ⊗-triangulated category and let ∆ : e
γ // 1

λ // f // Σe
be an exact triangle. Then the following are equivalent :

(i) γ ⊗ ide is an isomorphism e⊗ e ∼→ e.
(ii) e⊗ f = 0.

(iii) λ⊗ idf is an isomorphism f
∼→ f ⊗ f .

Moreover, in that case, Ker(−⊗ f) = Im(−⊗ e) and Ker(−⊗ e) = Im(−⊗ f).
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Proof. Triangles ∆ ⊗ e and ∆ ⊗ f give (i)⇔(ii) and (ii)⇔(iii), respectively. The
moreover part can be read on ∆⊗ t for arbitrary t ∈ T. �

3.2. Definition. An exact triangle ∆ : e
γ // 1

λ // f // Σe satisfying the equivalent

conditions of Prop. 3.1 will be called an idempotent triangle. Moreover, γ : e → 1

will be called a left idempotent and λ : 1 → f a right idempotent. A morphism of
idempotent triangles ∆→ ∆′ is a morphism of triangles of the form (ε, id1, ϕ) :

(3.3)

e
γ //

ε
��

1
λ // f //

ϕ
��

Σe

Σε
��

e′
γ′ // 1

λ′ // f ′ // Σe′.

Morphisms of left and right idempotents are defined in the obvious similar way,
keeping only the square with ε and ϕ respectively. We denote by

D(T), E(T) and F(T)

the collection of isomorphism classes of idempotent triangles, of left idempotents
and of right idempotents respectively. We denote by [−] these isomorphism classes.
All three D(T), E(T) and F(T) carry a partial order induced by morphisms. For
instance, [∆] ≤ [∆′] if and only if there exist a morphism of idempotent triangles
(ε, id, ϕ) : ∆→ ∆′. We will often simply write ∆ ≤ ∆′, e ≤ e′ or f ≤ f ′.

3.4. Remark. Following Proposition 3.1 and its proof, one sees that the (partially
ordered) classes D(T), E(T) and F(T) are isomorphic via the forgetful maps D(T)→
E(T),F(T), whose inverses come from completing morphisms into exact triangles.
We now prove that they also agree with the class of smashing ideals S(T), see
Def. 2.15.

3.5. Theorem (Compare [22, Lem. 3.1.6]). Let (T,⊗,1) be a ⊗-triangulated cat-
egory. All four partially ordered classes above, S(T), D(T), E(T) and F(T), are
isomorphic. More precisely :

(a) For every smashing ideal S ⊂ T, the triangle ∆S(1) defined in (2.7) is an
idempotent triangle, which will be denoted

(3.6) ∆(S) :=
(
e(S)

γ // 1
λ // f(S) // Σe(S)

)
.

Up to unique isomorphism of idempotent triangles, ∆(S) is characterized by
the following three properties : ∆(S) is exact, e(S) ∈ S and f(S) ∈ S⊥.

(b) For every idempotent triangle ∆ : e
γ // 1

λ // f // Σe , the functor Lf
defined by −⊗ f : T → T is a localization functor, whose kernel Ker(−⊗ f)
is a smashing ideal, denoted S(∆). We have S(∆) = Ker(−⊗f) = Im(−⊗e)
whereas S(∆)

⊥
= Ker(−⊗ e) = Im(−⊗ f).

The constructions S 7→ ∆(S) and ∆ 7→ S(∆), described in (a) and (b), are order-
preserving, mutually inverse bijections between S(T) and D(T).

Proof. For (a), since S and S⊥ are ⊗-ideals, ΓS(1)⊗LS(1) ∈ S∩S⊥ = 0. We conclude
by Proposition 3.1. For (b), the functor Lf = −⊗ f : T → T is a localization with
λ : Id → Lf induced by λ : 1 → f . It is clear that Lf satisfies Theorem 2.13 (ii).

Hence S(∆) := Ker(−⊗ f) is a smashing ideal. We claim that f ∈ S(∆)
⊥

. Indeed,
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if α : t → f is a morphism with t ∈ S(∆), then tensoring α with λ : 1 → f gives
the commutative square

t //
α ��

t⊗ f = 0

��
f '

// f ⊗ f

which implies α = 0. Thus f ∈ S(∆)
⊥

and e ∈ S(∆). In short, ∆ : e // 1 // f // Σe
must be the unique exact triangle with these properties, i.e. ∆ ' ∆S(∆)(1). It is
now easy to see that ∆ 7→ S(∆) and S 7→ ∆(S) are inverse bijections and that
the latter is order-preserving, see Rem. 2.9. Finally, we show that ∆ 7→ S(∆) is
order-preserving. Let (ε, id, ϕ) : ∆ → ∆′ be a morphism of idempotent triangles
as in (3.3) above. Applying e ⊗ − to (3.3) and using that e ⊗ f = 0 shows that
ide⊗λ′ : e → e ⊗ f ′ = Lf ′(e) is zero. This implies Lf ′(e) = 0 by universality of
e→ Lf ′(e) (or just by applying −⊗ f ′), hence e ∈ Ker(−⊗ f ′). We get as wanted
S(∆) = Im(−⊗ e) ⊂ Ker(−⊗ f ′) = S(∆′). �

3.7. Corollary. Let (T,⊗,1) be a ⊗-triangulated category.

(a) Let ∆ = (e → 1 → f → Σe) be an idempotent triangle. Then we have
Im(−⊗ e) = Ker(−⊗ f) ⊥ Im(−⊗ f) = Ker(−⊗ e).

(b) If [∆] ≤ [∆′] then there exists a unique morphism of idempotent triangles
∆→ ∆′. Similarly for left idempotents and for right idempotents.

(c) If two right idempotents f and f ′ are isomorphic as objects of T, via an

isomorphism α : f
∼→ f ′, then there is a unique isomorphism of right idem-

potents ϕ : f
∼→ f ′ (possibly different from α). Same with left idempotents

and idempotent triangles, mutatis mutandis.

Proof. We use Theorem 3.5 throughout : (a) is clear from Ker(− ⊗ f) = S(∆) ⊥
S(∆)

⊥
= Im(−⊗ f). For (b), if ∆ ≤ ∆′, we have S(∆) ⊂ S(∆′) and uniqueness of

∆→ ∆′ is Remark 2.9. For (c), use that Ker(−⊗ f) = Ker(−⊗ f ′) in S(T). �

3.8. Remark. For T compactly generated, D(T), E(T) and F(T) are sets (Rem. 2.16).

3.9. Remark. Any ⊗-triangulated functor q : T → T′ induces three obvious com-
patible maps D(T) → D(T′), E(T) → E(T′) and F(T) → F(T′) and consequently a
fourth one S(T)→ S(T′) by the bijection of Thm. 3.5. If moreover T′ is of the form
T/S for some smashing subcategory S of T then S(T)→ S(T/S) is nothing but the
map of Remark 2.17. We leave this verification to the reader.

3.10. Notation. When e → 1 → f → Σe is an idempotent triangle, we use ⊥f
to mean e and similarly e⊥ to mean f . For any right idempotent f , we thus have

(⊥f)
⊥

= f and f ⊗ ⊥f = 0 as well as Im(−⊗ ⊥f) = Ker(−⊗ f).

3.11. Proposition. Let T be a ⊗-triangulated category. Then the four isomorphic
partial orders (S(T),⊂), (D(T),≤), (E(T),≤) and (F(T),≤) are lattices, i.e. any
finite subset has a supremum and an infimum. The tensor product provides the
meet ∧ (pairwise infimum) on E(T) and the join ∨ (pairwise supremum) on F(T).
Explicitly, for any pair of left idempotents, we have e∧ e′ = e⊗ e′ and for any pair
of right idempotents we have f ∨ f ′ = f ⊗ f ′. On S(T), this becomes : If S and S′

are smashing ideals, then S ∧ S′ = S ∩ S′ whereas S ∨ S′ = Ker(−⊗ f(S)⊗ f(S′)).

Proof. Tensor clearly preserves left and right idempotents. If α : f → f ′′ and α′ :
f ′ → f ′′ are morphisms of right idempotents then α⊗α′ : f ⊗f ′ → f ′′⊗f ′′ ' f ′′ is
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the unique (Cor. 3.7) morphism of right idempotents making the following diagram
commute

1
λ //

λ′ ��

f

1⊗λ′ �� α

��

f ′
λ⊗1 //

α′ 11

f ⊗ f ′

α⊗α′
&&NNNNNNNN

f ′′.

This shows that −⊗− gives coproducts of right idempotents, hence joins in F(T).
Dually, −⊗− gives products of left idempotents, hence meets in E(T). The bijec-
tions D(T) ' E(T) ' F(T) ' S(T) of Thm. 3.5 yield joins and meets everywhere.
One checks that Im(−⊗e)∧Im(−⊗e′) = Im(−⊗e⊗e′) = Im(−⊗e)∩Im(−⊗e′). �

3.12. Corollary (Compare [33, Lem. 7.2]). If e ≤ e′ in E(T), then e⊗(e′)
⊥

= 0 and
there is a unique isomorphism of left idempotents e ⊗ e′ ∼= e. Similarly, if f ≤ f ′

in F(T), then (⊥f)⊗ f ′ = 0 and f ⊗ f ′ ∼= f ′. (See Notation 3.10.)

Proof. e ≤ e′ implies e∧e′ = e and ∧ is given by⊗ on left idempotents by Prop. 3.11.
Hence the unique isomorphism of left idempotents e⊗ e′ ∼= e by Cor. 3.7. It follows

that e⊗ (e′)
⊥ ∼= e⊗ e′ ⊗ (e′)

⊥
= 0. The dual is dual. �

We can now state and prove an abstract version of Rickard’s Mayer-Vietoris
triangles, see [33, Thm. 8.1]. The idea of the proof is the same as in loc. cit.

3.13. Theorem (Abstract Mayer-Vietoris triangles; see Rouquier [34, Prop. 5.10]).
Let e, e′ ∈ E(T) be left idempotents and f, f ′ ∈ F(T) be right idempotents in any
⊗-triangulated category T. Then there exist exact triangles in T

(a) e⊗ e′ → e⊕ e′ → e ∨ e′ → Σ(e⊗ e′) ,

(b) f ∧ f ′ → f ⊕ f ′ → f ⊗ f ′ → Σ(f ∧ f ′) .

Proof. Let λ : 1 → f and λ′ : 1 → f ′ be in F(T). By Prop. 3.11, there is a
commutative square of right idempotents as in the outer square of the following
diagram :

f ∧ f ′ i //

i′

��

v

##FFF
f

p

��

d
q

77ooooooooo

q′
���������

y

f ′
p′

// f ⊗ f ′,

which we complete by introducing the weak pull-back d of p = idf ⊗λ′ and p′ =
λ⊗ idf ′ , as well as a corner morphism v : f ∧f ′ → d making the diagram commute.
Let us prove that c := cone(v) is zero. First note that all the objects f, f ′, f∧f ′ and
f⊗f ′ become zero when we tensor them by ⊥(f∧f ′) = ⊥f⊗⊥f ′. Thus d⊗⊥(f∧f ′) =
0 and c⊗⊥(f ∧ f ′) = 0 as well. It now suffices to prove that c⊗⊥(f ∧ f ′) ' c, that
is, c ∈ Im(− ⊗ ⊥(f ∧ f ′)) = Ker(− ⊗ (f ∧ f ′)) = Ker(− ⊗ f) ∩ Ker(− ⊗ f ′), using
Proposition 3.11 again.

Observe that idf ⊗p′ = idf ⊗λ ⊗ idf ′ is an isomorphism since f is idempotent.
Applying f ⊗ − to the above weak pull-back gives another weak pull-back, from
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which we deduce that idf ⊗q is an isomorphism as well. On the other hand, the
same is true for i by Corollary 3.12 applied to f ∧ f ′ ≤ f , that is, idf ⊗i is an
isomorphism. By 2-out-of-3, we see that v has the same property : it becomes an
isomorphism under f ⊗ −. This implies that f ⊗ c ' 0, that is, c ∈ Ker(− ⊗ f).
Symmetrically, c ∈ Ker(−⊗ f ′) hence c ∈ Ker(−⊗ f) ∩Ker(−⊗ f ′) as wanted.

So, c ' 0 and v is an isomorphism. This gives the exact triangle in (b). The
proof for the triangle in (a) is dual. �

3.14. Remark. The proof gives more precisely two weakly (bi) cartesian squares

e⊗ e′ = e ∧ e′ //

��

e

��
e′ // e ∨ e′

and

f ∧ f ′ //

��

f

��
f ′ // f ∨ f ′ = f ⊗ f ′

in T, where all the maps are morphisms of idempotents, as given by Proposi-
tion 3.11. This characterizes those maps uniquely by Corollary 3.7.

Always walking in Rickard’s path (see [33, Cor. 8.2] and its proof) we deduce a
generalized version of a celebrated theorem of Jon Carlson (see [18]).

3.15. Corollary (Generalised Carlson Theorem). Let S, S′ be smashing ideals in T.

(a) If S∩ S′ = 0, then we have e(S∨ S′) ' e(S)⊕ e(S′) and S∨ S′ = S⊕ S′, that
is, any t ∈ S ∨ S′ is decomposable as t ' s⊕ s′ where s ∈ S and s′ ∈ S′.

(b) If S ∨ S′ = T, then f(S ∩ S′) ' f(S)⊕ f(S′) and (S ∩ S′)
⊥

= S⊥ ⊕ (S′)
⊥

.

Proof. When S∩S′ = 0, we have e(S∧S′) = e(0) = 0 and e(S∨S′) ' e(S)⊕e(S′) by
the Mayer-Vietoris triangle in Thm. 3.13 (a). For t ∈ S∨S′, we have t ' t⊗e(S∨S′),
hence t ' (t⊗ e(S))⊕ (t⊗ e(S′)) ∈ S⊕ S′, which gives (a). Part (b) is dual. �

4. Inflating and Telescope

So far, we have used the triangular structure of T (for localization) and the ⊗-
structure (for smashing and idempotents). We now throw in the assumption that
T is also compactly generated. The main device throughout the following chapters
is what we informally call inflation, that is the assignment of the smashing ideal
〈C〉 ⊂ T (Notation 2.2) to every thick ideal C ⊂ K of compact objects.

4.1. Theorem (Miller, Neeman). Under Hypotheses 1.1, let C be a thick ⊗-ideal of
K = Tc. Then, we have :

〈C〉 // // 〈K〉 = T // // T/〈C〉

C // //
?�

OO

K // //
?�

OO

K/C
?�

OO

(a) 〈C〉 is a smashing ⊗-ideal of T and 〈C〉c = 〈C〉 ∩K = C.

(b) T/〈C〉 has small hom sets and is a compactly generated ⊗-triangulated cat-
egory in the sense of Hypotheses 1.1.

(c) K/C fully faithfully embeds into the compact objects of T/〈C〉 and the thick
closure of K/C is exactly (T/〈C〉)c.
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Proof. (a) is Miller’s theorem, see [29] or [22, Thm. 3.3.3]. Parts (b) and (c) are Nee-
man’s results [31, Cor. 4.4.3, Thm. 4.4.9]. This is also nicely done in [26, Thm. 5.6.1].
In order to fulfil our Hypotheses 1.1, T̄ := T/〈C〉 must also carry a closed ⊗-
structure. The tensor on T̄ is induced by that of T since 〈C〉 is a ⊗-ideal. Since
T̄ is compactly generated it follows that this ⊗-structure is closed as well. Ex-

plicitly, let r : T̄−→〈C〉⊥ ⊂ T be a right-adjoint right-inverse of the localization
functor q : T−→ T̄. Then the tensor on T̄ is given by x ⊗ y = q(r(x) ⊗ r(y)) and
the internal hom can be given by (x, z) 7→ q(hom(r(x), r(z))). Indeed, we have

T̄(x⊗ y, z) = T̄
(
q(r(x)⊗ r(y)), z

) ∼= T
(
r(x)⊗ r(y), r(z)

) ∼= T
(
r(y),hom(r(x), r(z))

)
∼= T

(
r(y), rq

(
hom(r(x), r(z))

)) ∼= T̄
(
y, q
(
hom(r(x), r(z))

))
where the ∼= at the beginning of the second row uses the fact that hom(T, 〈C〉⊥) ⊂
〈C〉⊥, which holds since 〈C〉 is ⊗-ideal. Since q is a ⊗-functor, it preserves rigid
objects by [27, Prop. 1.9]. Therefore, by (c), all compact objects of T̄ are rigid.
By (c) again, the unit 1T̄ = q(1T) remains compact in T̄. �

4.2. Definition. Under Hypotheses 1.1, we say that the Telescope Conjecture holds
for T if every smashing ⊗-ideal S of T is inflated, i.e. S = 〈C〉 where C is a thick
⊗-ideal of K (necessarily equal to S ∩K). We often just write “TC holds for T”.

4.3. Remark. The Telescope Conjecture, also known as the Smashing Conjecture,
was first formulated in topology for T = SH, see Bousfield [15, 3.4] and Ravenel [32,
1.33], where it remains open. See a modern approach in Krause [25]. The conjecture
fails for general compactly generated triangulated categories, see Keller [24].

4.4. Proposition. Under Hypotheses 1.1, let S ⊂ T be a smashing ideal. If TC
holds for T then TC holds for T/S.

Proof. Since TC holds for T, we have S = 〈C〉 for C := S ∩ K ⊂ K and we know
that T/〈C〉 is compactly generated by Thm. 4.1. Let now S̄ be a smashing ⊗-ideal
of T/S. It is easy to see that there is a smashing ⊗-ideal S′ of T, that contains S,
whose image under q : T → T/S is S̄ (Rem. 2.17). Since TC holds for T, we have
that S′ = 〈C′〉 for C′ = S′ ∩K. Then S̄ = q(〈C′〉) = 〈q(C′)〉 is easy to check. �

Recall from Prop. 3.11 that the join S∨S′ is defined to be Ker(−⊗ f(S)⊗ f(S′))
and is the smallest smashing ideal containing both smashing ideals S and S′.

4.5. Lemma. Under Hypotheses 1.1, let C,C′ be thick ⊗-ideals of K = Tc. Then

(a) 〈C〉 ∩ 〈C′〉 = 〈C ∩ C′〉.
(b) If C′′ ⊂ K is the thick ⊗-ideal generated by C and C′, then 〈C′′〉 = 〈C〉∨〈C′〉.
(c) If C ⊥ C′ (Def. 2.5) then 〈C〉 ⊥ 〈C′〉.
(d) If C ⊥ C′ and C′ ⊥ C then 〈C⊕ C′〉 = 〈C〉 ⊕ 〈C′〉

Proof. The non-trivial inclusion 〈C〉 ∩ 〈C′〉 ⊂ 〈C ∩ C′〉 in (a) uses the equality

(4.6) 〈C〉 =

{
t ∈ T

∣∣∣∣∣ for every f : x→ t with x ∈ K, there exists c ∈ C

and a factorization x
f //
$$JJJ t

c

::uuu

}

(see [31, Thm. 4.3.3]) and the rigid ⊗-structure on K. Indeed, using (4.6) twice, we
reduce to show that any morphism g : c → c′ in K with c ∈ C and c′ ∈ C′ factors
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by an object of C ∩ C′. If h : 1→ hom(c,1)⊗ c′ is the adjoint of g, then g factors
as

c
g //

1⊗h ))

c′

c⊗ hom(c,1)⊗ c′ ε⊗1

==

where ε is the counit of the adjunction. Of course c ⊗ hom(c,1) ⊗ c′ ∈ C ∩ C′.
This gives (a). Both inclusions in (b) are very easy. For (c), note that (4.6)
implies C ⊂ ⊥〈C′〉 and then use that ⊥〈C′〉 is localizing. Finally, the non-trivial
inclusion 〈C⊕ C′〉 ⊂ 〈C〉⊕〈C′〉 in (d) comes from the fact that 〈C〉⊕〈C′〉 is localizing
(triangulated is the issue). In fact, 〈C〉⊕〈C′〉 = 〈C〉∨ 〈C′〉 by Corollary 3.15 (a). �

5. Tensor idempotents and geometry

We quickly recall elements of tensor triangular geometry from [2], [3] and [7].

5.1. Definition (See [2]). Let (K,⊗,1) be an essentially small ⊗-triangulated cat-
egory. A prime ideal P ( K is a proper thick ⊗-ideal such that a ⊗ b ∈ P forces
a ∈ P or b ∈ P. The spectrum Spc(K) is the set of prime ideals P ⊂ K. The support
of an object a ∈ K is defined as the subset supp(a) = {P ∈ Spc(K) | a /∈ P}.
The complements U(a) = {P ∈ Spc(K) | a ∈ P} of these supports form a basis
{U(a)}a∈K of the so-called Zariski topology on the spectrum.

5.2. Examples. Here are the spectra Spc(K) for the standard K = Tc of Exas 1.2.

(1) For K = SHfin, one has Spc(K) = {SHfin
tor} ∪

{
Pp,n

∣∣ p prime and 1 ≤ n ≤ ∞
}

,

where Pp,n is the kernel of the nth Morava K-theory at p for n < ∞, where

Pp,∞ = ∩n≥1Pp,n = Ker(SHfin → SHfin
(p)) and where SHfin

tor is the category of

torsion spectra (which is also Pp,0 for all p). The main reference is Hopkins-
Smith [21], with explanations in [5, § 9].

(2) For K = Dperf(X), one recovers Spc(K) ∼= X itself. See [2, Thm. 6.3].

(3) For K = stab(kG), one has Spc(K) ∼= Proj(H•(G, k)), which is the projective
support variety VG of G over k. See [2, Thm. 6.3] as well.

5.3. Remark. The pair (Spc(K), supp) is a support datum in the sense of [2, Def. 3.1],
i.e. supp(0) = ∅, supp(1) = Spc(K), supp(a⊕ b) = supp(a) ∪ supp(b), supp(Σa) =
supp(a), supp(c) ⊂ supp(a)∪ supp(b) for every exact triangle a→ b→ c→ Σa and
finally supp(a⊗ b) = supp(a) ∩ supp(b). All this for a, b, c ∈ K.

5.4. Remark. We have {P} =
{
Q ∈ Spc(K)

∣∣Q ⊂ P
}

by [2, Prop. 2.9].

5.5. Definition. Let Y ⊂ Spc(K). We denote by KY the thick ⊗-ideal of K

(5.6) KY := {a ∈ K | supp(a) ⊂ Y }

of objects supported on Y . It is radical, that is, it contains a⊗n only if it contains a.

5.7. Definition. For a topological space X, a subset Y of the form Y = ∪i∈IYi
where all Yi are closed and have quasi-compact complement, is called a Thomason
subset of X (or dual open). We write Th(X) for the set of Thomason subsets of X.
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5.8. Examples. In Examples 1.2, when K = Dperf(X) for X a noetherian scheme,
or when K = stab(kG) for G a finite group, then a Thomason subset Y ⊂ Spc(K)

is simply a specialization-closed one, meaning y ∈ Y ⇒ {y} ⊂ Y for all y ∈ Y ,
or equivalently, Y is a union of closed subsets. Compare Proposition 7.13 below.
For the other running example, K = SHfin, a Thomason subset is a union of closed
subsets of the form {Pp,n} for n finite. One excludes {Pp,∞} = {Pp,∞} because its
open complement is not quasi-compact. See more in Section 7.

5.9. Theorem (Classification Theorem, [2, Thm. 4.10]). Let K be a ⊗-triangulated
category as above. Let R(K) be the set of all thick radical ⊗-ideals of K. Then there
is a bijection Th(Spc(K)) → R(K) mapping every Thomason subset Y ⊂ Spc(K)
to KY , see (5.6). Its inverse is given by J 7→ supp(J) := ∪a∈J supp(a).

5.10. Remark. When K is rigid (as it is for our K = Tc), every thick ⊗-ideal is
automatically radical by [3, Prop. 4.2]. So “radical” is irrelevant for us here.

5.11. Remark. The space Spc(K) is always spectral in the sense of Hochster [20],
i.e. it has a basis of quasi-compact open subsets and every irreducible subset of X
has a unique generic point (in particular X itself is assumed quasi-compact and it
is T0). Note that every quasi-compact open subset U of a spectral space X is again
spectral. To each spectral space X one can associate its Hochster dual X∗ which
is again a spectral space. The underlying space of X∗ is the set X itself, while the
dual-open subsets are given by the collection of what we called Thomason subsets
of X (Def. 5.7). Hochster proves that (X∗)∗ = X in [20, Prop. 8].

5.12. Definition. Under Hypotheses 1.1, let U be a quasi-compact open subset of
Spc(K) and Z its closed complement. We set

T(U) := T/〈KZ〉 and K(U) = T(U)c.

We call T(U) the category T on U . We will denote by resU : T → T(U) the cor-
responding localization functor. The assignment U 7→ T(U) is a “presheaf” of
triangulated categories on Spc(K). By Theorem 4.1, T(U) is a compactly gener-
ated ⊗-triangulated category whose subcategory of compact objects K(U) is the
idempotent completion of K/KZ . We have Spc(K(U)) ∼= U by [7, Prop. 1.11].

5.13. Remark. If T = D(X) for a quasi-compact quasi-separated scheme X, see

Ex. 1.2 (2), and if U is a quasi-compact open of X ' Spc(Dperf(X)), then the above
category T(U) is nothing but D(U). Indeed, D(U) ∼= D(X)/DZ(X), where DZ(X)
is the subcategory of D(X) consisting of complexes supported on Z = X r U ; see
Thomason-Trobaugh [36] or Jørgensen [23, Thm. 1]. The key point is now that

〈Dperf
Z (X)〉 = DZ(X), as proven in Rouquier [34, Thm. 6.8] for instance.

5.14. Theorem. Under Hypotheses 1.1, let Y,Z ⊂ Spc(K) be disjoint Thomason
subsets. Then 〈KY 〉 and 〈KZ〉 are in a formal Mayer-Vietoris situation (Def. 2.10).
Hence we have 〈KY 〉 ⊕ 〈KZ〉 = 〈KY ⊕KZ〉 = 〈KY ∪Z〉.

Proof. Since K is rigid, [3, Cor. 2.8 and Thm. 2.11] give KY ⊥ KZ ⊥ KY and
KY ∪Z = KY ⊕KZ . The result follows from Lemma 4.5 (c) and (d). �
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5.15. Corollary. If Spc(K) = U1 ∪ U2 with Ui quasi-compact open, i = 1, 2, then

T //

��

T(U1)

��
T(U2) // T(U1 ∩ U2) .

satisfies gluing of objects and morphisms as in Theorems 2.11 and 2.12. �

5.16. Definition. Under Hypotheses 1.1, let Y ⊂ SpcK be a Thomason subset.
Set

TY := 〈KY 〉
(5.6)
= 〈

{
a ∈ K

∣∣ supp(a) ⊂ Y
}
〉 ⊂ T .

By Thm. 4.1, TY is a smashing ideal of T. We define e(Y ) := e(TY ) and f(Y ) :=
f(TY ). We call these the (left and right) tensor idempotents associated to the
subset Y ⊂ Spc(K). As usual, they are characterized by the exact triangle

(5.17) ∆(Y ) :=
(
e(Y ) // 1 // f(Y ) // Σe(Y )

)
such that e(Y ) ∈ TY and f(Y ) ∈ (TY )

⊥
. We have e(Y ) ⊗ f(Y ) = 0 and TY =

Im(−⊗ e(Y )) = Ker(−⊗ f(Y )); see Thm. 3.5.

The following result generalizes Prop. 6.2, Thm. 7.5 and Thm. 8.1 in [33].

5.18. Theorem (Geometric Mayer-Vietoris triangles). Under Hypotheses 1.1, let
Y1, Y2 ⊂ Spc(K) be Thomason subsets. There are unique isomorphisms of left
idempotents

e(Y1 ∩ Y2) ∼= e(Y1)⊗ e(Y2) and e(Y1 ∪ Y2) ∼= e(Y1) ∨ e(Y2)

in T. Similarly, there are unique isomorphisms of right idempotents

f(Y1 ∩ Y2) ∼= f(Y1) ∧ f(Y2) and f(Y1 ∪ Y2) ∼= f(Y1)⊗ f(Y2) .

Finally, there exist exact triangles in T :

e(Y1 ∩ Y2)→ e(Y1)⊕ e(Y2)→ e(Y1 ∪ Y2)→ Σ(e(Y1 ∩ Y2)) and

f(Y1 ∩ Y2)→ f(Y1)⊕ f(Y2)→ f(Y1 ∪ Y2)→ Σ(f(Y1 ∩ Y2)).

Proof. First note that by definition, KY1∩Y2 = KY1 ∩ KY2 . By Lemma 4.5 (a), it
follows that 〈KY1∩Y2

〉 = 〈KY1
〉∩ 〈KY2

〉 = 〈KY1
〉∧ 〈KY2

〉. On the other hand, by the
Classification Theorem 5.9, the thick ⊗-ideal of K generated by KY1

and KY2
must

be KY1∪Y2
, hence 〈KY1∪Y2

〉 = 〈KY1
〉 ∨ 〈KY2

〉 by Lemma 4.5 (b). We have proved :

(5.19) TY1∩Y2
= TY1

∧ TY2
and TY1∪Y2

= TY1
∨ TY2

.

Proposition 3.11 translates this into the four stated isomorphisms of idempotents,
which can then be used in the abstract Mayer-Vietoris triangles of Thm. 3.13. �

5.20. Remark. Following-up on Remark 3.14, we have more precisely constructed
two weakly (bi) cartesian squares in T :

e(Y1 ∩ Y2) //

��

e(Y1)

��
e(Y2) // e(Y1 ∪ Y2)

and

f(Y1 ∩ Y2) //

��

f(Y1)

��
f(Y2) // f(Y1 ∪ Y2)

in which all the morphisms are the unique morphisms of idempotents induced by
the four inclusions : Y1 ∩ Y2 ⊂ Yi and Yi ⊂ Y1 ∪ Y2 for i = 1, 2.
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5.21. Remark. Let ρ : Spc(K) → X be a map to a spectral topological space X,
see Rem. 5.11. Assume that ρ is spectral (i.e. is continuous for the given topologies
and for their dual). Then this yields left and right idempotents in T by sending any
Thomason subset W ⊂ X to e(ρ−1(W )) and f(ρ−1(W )). Mayer-Vietoris triangles
in this setting are immediate consequences of Theorem 5.18 and the trivial fact
that W 7→ ρ−1(W ) commutes with union and intersection.

5.22. Example. Following [33, § 6], we can describe the idempotents e(Y ) and
f(Y ) when Y ⊂ Spc(K) is principal in the following sense. Let ζ : 1→ Σd(1) be a
homogeneous element of degree d ∈ Z in the graded central ring

R•K := End•(1) = HomK(1,Σ•1)

using notation of [5]. Then the closed subset V (ζ) =
{
p
∣∣ ζ ∈ p

}
in the homoge-

neous spectrum Spech(R•K) defines a closed subset (ρ•)−1(V (ζ)) ⊂ Spc(K), where

ρ• : Spc(K) → Spech(R•K) is the spectral map defined in [5, Def. 5.1]. By [5,
Thm. 5.3], this closed subset is simply supp(cone(ζ)) ⊂ Spc(K), the support of
the cone of the chosen ζ. Let ∆(ζ) := ∆(supp(cone(ζ))) be the corresponding
idempotent triangle

(5.23) ∆(ζ) =
(
e(ζ) // 1 // f(ζ) // Σe(ζ)

)
as in (5.17) for Y = supp(cone(ζ)). Here is an alternative description of f(ζ).

5.24. Theorem. Under Hypotheses 1.1, let ζ : 1 → Σd(1), d ∈ Z. Consider the
homotopy colimit hocolimi Σid(1) (see [31, Def. 1.6.4]) of the following sequence :

1
ζ−→Σd(1)

ζ−→Σ2d(1)−→· · ·−→Σid(1)
ζ−→Σ(i+1)d(1)−→· · ·

Then 1−→ hocolimi Σid(1) is a right idempotent isomorphic to 1→ f(ζ).

Proof. Let Y := supp(cone(ζ)). Let ζ∞ : 1 → hocolimi Σid(1) =: h be the map of

the statement and choose an exact triangle g // 1
ζ∞ // h // Σg . It is easy

to check that ζ ⊗ idh : h
∼→ Σd(h) is an isomorphism, using [31, Lem. 1.7.1] for

instance. Hence cone(ζ) ⊗ h = 0. Then the localizing subcategory Ker(− ⊗ h) ⊂
T contains cone(ζ), hence also contains 〈cone(ζ)〉 = 〈KY 〉 = TY 3 e(Y ). So,

e(Y )⊗h = 0, that is, h ∈ Ker(−⊗ e(Y )) = (TY )
⊥

. From the commutative diagram

1

ζ
��

1

ζ2

��

1

ζi−1

��

1

ζi

��

1

ζi+1

��

· · · 1

ζ∞

��
Σd(1)

ζ // Σ2d(1) // Σ(i−1)d(1)
ζ // Σid(1)

ζ // Σ(i+1)d(1) // · · · // h

one proves easily that cone(ζ∞) belongs to 〈
{

cone(ζi)
∣∣ i ∈ N

}
〉 = 〈cone(ζ)〉 = TY .

Hence g ∈ TY . In short, we have an exact triangle g → 1 → h → Σg with g ∈ TY
and h ∈ (TY )

⊥
. This characterizes the triangle ∆(TY ) = ∆(Y ) = ∆(ζ), see (3.6),

(5.17), (5.23). In particular, h ∼= f(ζ) as claimed. �

5.25. Remark. When (the spectrum of) the ring R•K = End•(1) is noetherian, one

can extend the above definition of e(ζ) and f(ζ) to any closed W ⊂ Spech(R•K) by
choosing ζ1, . . . , ζr such that W = ∩ri=1V (ζi) and setting e(W ) = e(ζ1)⊗· · ·⊗e(ζr)
and f(W ) = f(ζ1)∧· · ·∧f(ζr) or equivalently by setting directly e(W ) = e(Y ) and
f(W ) = f(Y ) where Y = (ρ•)−1(W ) is the preimage of W in Spc(K) under the

continuous map ρ• : Spc(K)→ Spech(R•K) of [5]. These coincide; see Rem. 5.21.
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5.26. Remark. There are other generalizations of Rickard’s idempotents on the
market, mostly using the spectrum of some ring acting on T, instead of our Spc(Tc).
For instance, Hovey et al. [22, Def. 6.1.6] consider supports in the spectrum of
the endomorphism ring of the unit of T. See also Benson-Iyengar-Krause [11] for
a graded version. Actually, any support datum on K = Tc (see Rem. 5.3), say
{σ(a) ⊂ X}a∈K in some space X, allows an ad hoc definition of the subcategory
KW as

{
a ∈ K

∣∣σ(a) ⊂ W
}

for W ⊂ X. One could then apply the machinery to
TW := 〈KW 〉. Yet, it is a theorem that the best support datum on K is the one
provided by Spc(K); see [2, Thm. 3.2]. Any variation is at most as good as this one.

Specifically, Theorem 5.24 shows how the tensor idempotents e(ζ) and f(ζ) com-
ing from the homogenous spectrum of the central graded ring R•K = End•K(1) are

just special cases of our general construction. Note that Spech(R•K) fails to recover
the spectrum Spc(K) for general T, as illustrated in topology; see [5, § 9]. So,

Spc(K) is strictly better than Spech(R•K).
Another variation on the theme would be to consider support data {σ(t) ⊂ X}t∈T

on the whole of T and to define TW boldly as
{
t ∈ T

∣∣σ(t) ⊂ W
}

. This is simply
useless unless we can decide when TW is smashing.

In conclusion, the balanced path seems to follow Rickard’s original idea, rooting
back to Miller’s theorem in topology, i.e. to create smashing subcategories of T by
inflating thick subcategories of Tc and parametrizing the latter with some subsets
of some topological space, the best choice for such a space being Spc(Tc).

6. Rickard map and Telescope Conjecture

6.1. Definition. Under Hypotheses 1.1, recall that Th(SpcK) is the set of Thoma-
son subsets of the spectrum of the subcategory of compact objects K = Tc (Def. 5.7)
and that D(T) is the set of idempotent triangles in T (Def. 3.2). We define the
Rickard map of T as the assignment of Definition 5.16

∆ : Th(SpcK) −→ D(T)

Y 7−→ ∆(Y ) =
(
e(Y ) // 1 // f(Y ) // Σe(Y )

)
of an idempotent triangle ∆(Y ) to every Thomason subset Y ⊂ Spc(K). Recall
that ∆(Y ) is the localization triangle of the smashing ideal TY := 〈KY 〉 inflated
from the thick ideal KY =

{
a ∈ K

∣∣ supp(a) ⊂ Y
}

of compact objects supported
on Y . So, ∆(Y ) is an exact triangle, with left idempotent e(Y ) in TY and right
idempotent f(Y ) such that −⊗ f(Y ) : T → T gives localization modulo TY .

6.2. Proposition. Under Hypotheses 1.1, the Rickard map Th(SpcK)
∆−→D(T) is

always injective. It is surjective if and only if the Telescope Conjecture holds for T.

Proof. The Rickard map ∆ is the composition of the following three maps :

Th(SpcK)
∼−→ R(K) , R(K) ↪−→ S(T) and S(T)

∼−→ D(T)
Y 7−→ KY C 7−→ 〈C〉 S 7−→ ∆(S) .

Here, R(K) is the set of (radical) thick ⊗-ideals of K, as in the Classification The-
orem 5.9, which also gives the bijectivity of the first map; see also Rem. 5.10. The
second map is the “inflation” of Theorem 4.1 (a), which also provides injectivity :
actually a retraction S(T) → R(T) is given by S 7→ S ∩K. The surjectivity of the
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second map is exactly the Telescope property of Definition 4.2. Finally, the last
map is the bijection of Theorem 3.5. �

The above simple result is the key to the understanding of the Telescope Con-
jecture in a local way. But first, let us express the naturality of our Rickard map.

6.3. Theorem. Let T and T′ be compactly generated tensor triangulated as in Hy-
potheses 1.1 and let K = Tc and K′ = (T′)c. Let F : T → T′ be a ⊗-triangulated
functor such that F (K) ⊂ K′ and such that F preserves small coproducts. (Equiv-
alently, F has a right adjoint which itself preserves small coproducts, see [26,
Prop. 5.3.1 and Lem. 5.4.1].) Then the induced map Φ := Spc(F ) : Spc(K′) →
Spc(K) induces another map Th(SpcK) → Th(SpcK′), defined by Y 7→ Φ−1(Y ),
that we simply denote F . Moreover the following diagram commutes :

Th(SpcK)
∆ //

F

��

D(T)

F

��
Th(SpcK′)

∆ // D(T′) .

Proof. The continuous map Φ = Spc(F ) : Spc(K′) → Spc(K) is spectral (cf.
Rem. 5.21) which amounts to say that the preimage under Φ of a quasi-compact
open is quasi-compact; to check this, recall from [2, Prop. 2.14] that the quasi-
compact open subsets of Spc(K) are the U(a) = Spc(K) r supp(a), for a ∈ K, and
from [2, Prop. 3.6] the first equality below (the second equality is just the notation) :

(6.4) supp(F (a)) = Φ−1(supp(a)) = F (supp(a)) .

It follows that the preimage under Φ of every Thomason subset of Spc(K) is still
Thomason; see Def. 5.7. Hence the map denoted F : Th(SpcK)→ Th(SpcK′) and
given by Y 7→ Φ−1(Y ) is well-defined. Note that F : Th(SpcK) → Th(SpcK′)
preserves inclusion. The obvious map F : D(T) → D(T′) sends an idempotent
triangle ∆ = (e→ 1→ f → Σe) to F (∆) := (F (e)→ 1→ F (f)→ ΣF (e)), which
is still idempotent since F (e)⊗ F (f) ' F (e⊗ f) = F (0) = 0; see Def. 3.2.

Let us prove the last statement. Let Y ⊂ Spc(K) be a Thomason subset and

∆(Y ) =
(
e(Y ) // 1 // f(Y ) // Σe(Y )

)
the associated idempotent triangle (5.17). Let J′ ⊂ K′ the thick ⊗-ideal of K′ gen-
erated by F (KY ). By (6.4), J′ ⊂ K′F (Y ). Therefore supp(J′) ⊂ F (Y ). Conversely,

for any a ∈ KY , we have F (a) ∈ J′ hence supp(J′) ⊃ supp(F (a)) = F (supp(a))
by (6.4) again. Hence F (Y ) = F (supp(KY )) ⊂ ∪a∈KY

F (supp(a)) ⊂ supp(J′).
In conclusion, supp(J′) = F (Y ), which proves that J′ = K′F (Y ), by the Classifi-

cation Theorem 5.9. Therefore, in T′, we have 〈F (KY )〉 = 〈K′F (Y )〉
def.
= T′F (Y ).

Hence F (TY ) = F (〈KY 〉) ⊂ 〈F (KY )〉 = T′F (Y ). In particular, F (e(Y )) ∈ T′F (Y ).

On the other hand, T′F (Y ) = 〈K′F (Y )〉 = 〈F (KY )〉 ⊂ 〈F (〈KY 〉)〉 = 〈F (TY )〉 =

〈F (Im(−⊗ e(Y )))〉 ⊂ 〈Im(−⊗ F (e(Y )))〉 = Im(− ⊗ F (e(Y ))) since the latter is a
localizing ideal. Putting everything together, we have T′F (Y ) = Im(− ⊗ F (e(Y ))).

So, F (e(Y )) is the left idempotent generating the smashing ideal T′F (Y ), i.e. it is

e(T′F (Y )), which is denoted e(F (Y )) in T′. Consequently, F (∆(Y )) = ∆(F (Y )). �
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6.5. Corollary. Under Hypotheses 1.1, let U ⊂ Spc(K) be quasi-compact open.
Recall the localization resU : T−→T(U) of Definition 5.12. Recall that (T(U))c =
K(U) and that Spc(K(U)) ∼= U . Then the following diagram commutes

Y ∈_

��

Th(SpcK)

��

∆ // D(T)

resU

��
Y ∩ U ∈ Th(U) ∼= Th(SpcK(U))

∆ // D(T(U))

Proof. This is a special case of Theorem 6.3. Indeed, the homeomorphism U ∼=
Spc(K(U)) is such that supp(resU (a)) = supp(a) ∩ U , see [7, Prop. 1.11]. So the
map resU : Th(SpcK)→ Th(SpcK(U)) of Theorem 6.3 is indeed Y 7→ Y ∩ U . �

We now state the main result of this section which says that in order to prove
the Telescope Conjecture it is enough to prove it locally.

6.6. Theorem. Under Hypotheses 1.1, suppose that the spectrum Spc(K) =
⋃
i∈I Ui

is covered by quasi-compact open Ui. Then TC holds for T(Ui) for all i ∈ I if and
only if TC holds for T.

Proof. We have already seen ⇐ in Proposition 4.4. For the opposite implication,
quasi-compactness of Spc(K) and a simple induction argument reduce the proof to
the case SpcK = U1 ∪ U2. By Corollary 6.5, we have a commutative cube of sets :

(6.7)

Th(SpcK)

��

//

∆ ((PPPPPPP
Th(U1)

��

∆

''PPPPPP

D(T) //

��

D(T(U1))

��

Th(U2) //

∆ ((PPPPPP
Th(U12)

∆

''PPPPPP

D(T(U2)) // D(T(U12))

where U12 := U1 ∩ U2, where the maps ∆ : Th → D are the Rickard maps, where
the maps in the back are of the form Y 7→ Y ∩ Ui for i ∈ {1, 2, 12} and where the
maps in the front are the obvious localizations.

We will show that the two faces in the front and in the back are pullbacks.
For the square involving Thomason subsets, it suffices to show that in a spectral

space X, covered by two quasi-compact open X = U1 ∪ U2, a subset Y ⊂ X is
Thomason if Y ∩Ui is Thomason for i = 1, 2. Since all spaces involved are spectral
we can consider the dual topologies (Rem. 5.11). Then, both subsets Y ∩ Ui are
open in the closed subspaces U∗i of X∗ = U∗1 ∪U∗2 hence Y is open in X∗ as wanted.

The square involving idempotents is a pullback by a gluing argument in trian-
gulated categories. We leave the gluing of idempotents as an exercise for we do
not really need it below but we check uniqueness. That is, we check that if two
idempotent triangles ∆ = (e → 1 → f → Σe) and ∆′ = (e′ → 1 → f ′ → Σe′)
in D(T) are isomorphic over U1 and U2, that is, in T(Ui) for i = 1, 2, then they
are already isomorphic in T. By uniqueness of the isomorphism (Cor. 3.7), the two

isomorphisms resUi(∆)
∼→ resUi(∆

′) in T(Ui), i = 1, 2, must be equal in T(U12).

Therefore, by Theorem 2.12, there exists an isomorphism ϕ : f
∼→ f ′, as objects

of T. But Corollary 3.7 implies that ∆ ' ∆′ as idempotent triangles.
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So, the commutative cube (6.7) has cartesian front and back faces. We can now
conclude the proof. Suppose that TC holds for both T(U1) and T(U2). Then the
Rickard map ∆ : Th(SpcK)→ D(T) is surjective by an easy diagram chase in the
cube (6.7), using the bijectivity of ∆ : Th(Ui) → D(T(Ui)) for i = 1, 2 and the
injectivity only on U12; see Proposition 6.2. �

As an application of Theorem 6.6, we deduce the Telescope Conjecture for noe-
therian schemes, from the affine case proven by Neeman [30]. Let then X be
a noetherian scheme and let T = D(X) = DQcoh(OX), as in Ex. 1.2 (2). (Re-
call that D(X) ∼= D(Qcoh(X)) when X is moreover separated.) We have seen

that T is compactly generated and that K = Tc = Dperf(X). Moreover we know

that Spc(Dperf(X)) ' X, see [2, Cor. 5.6] for X (topologically) noetherian, or [16,
Thm. 8.5] in maximal generality, i.e. for X quasi-compact and quasi-separated.

6.8. Corollary (See Alonso et al. [1, Thm. 5.8]). Let X be a noetherian scheme.
Then the Telescope Conjecture holds for D(X) = DQcoh(OX). Consequently every
smashing subcategory of D(X) is of the following form, for a unique specialization
closed subset Y ⊂ X :

DQcoh,Y (OX) :=
{
E ∈ DQcoh(OX)

∣∣Ex ' 0 in D(OX,x) for all x ∈ X r Y
}
.

Proof. One can cover Spc(K) ' X = ∪i∈IUi by (quasi-compact) affine open sub-
schemes Ui = Spec(Ri), with Ri noetherian. By Rem. 5.13 we have that T(Ui)
is equivalent to D(Ui) ∼= D(Ri). Now by a result of Neeman [30, Cor. 3.4] we
know that TC holds for each D(Ri). We conclude by Theorem 6.6 that TC holds

for T = D(X). The classification of thick ⊗-ideals in Tc = Dperf(X) is due to
Thomason [35, Thm. 3.15], as in Thm. 5.9 above. Hence the second part. �

7. Residue objects and supports for big objects

We keep T compactly generated ⊗-triangulated as in Hypotheses 1.1 and Spc(K)
the spectrum of the subcategory of compact objects K = Tc. We now define residue
objects and supports for not necessarily compact objects, generalizing [10].

7.1. Remark. In Section 5, we constructed a left and a right idempotent e(Y ) and
f(Y ) fitting in an exact triangle ∆(Y ) : e(Y ) → 1 → f(Y ) → Σe(Y ), for every
Thomason subset Y ⊂ Spc(K); see (5.17). We can combine left and right to produce

(7.2) g(Y, Z) := e(Y )⊗ f(Z)

in T, for any pair of Thomason subsets Y,Z ⊂ Spc(K). This is neither a right, nor
a left idempotent but it is a ⊗-idempotent : g(Y, Z)⊗ g(Y,Z) ' g(Y,Z).

7.3. Notation. Let us write (−)c for the complement of subsets in Spc(K).

7.4. Lemma. Under Hypotheses 1.1, let Y, Y ′, Z, Z ′ ∈ Th(SpcK).

(a) Suppose that Y ∩ Zc = Y ′ ∩ Zc, then g(Y, Z) ∼= g(Y ′, Z).
(b) Suppose that Y ∩ Zc = Y ∩ (Z ′)c, then g(Y,Z) ∼= g(Y,Z ′).
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Proof. Replacing Y ′ by Y ∪ Y ′, we easily reduce (a) to the case Y ⊂ Y ′. Hence
〈KY 〉 ⊂ 〈KY ′〉 and we have a (unique) morphism of idempotent triangles

e(Y )
γ //

ε
��

1
λ // f(Y ) //

ϕ
��

Σe(Y )

Σε��
e(Y ′)

γ′ // 1
λ′ // f(Y ′) // Σe(Y ′) .

Since Y ∪ Z = (Y ∩ Zc) ∪ Z = (Y ′ ∩ Zc) ∪ Z = Y ′ ∪ Z, Theorem 5.18 gives an
isomorphism f(Y ) ⊗ f(Z) ∼= f(Y ∪ Z) = f(Y ′ ∪ Z) ∼= f(Y ′) ⊗ f(Z) which must
be ϕ⊗ idf(Z) (Cor. 3.7). Applying −⊗ f(Z) to the above diagram, it follows that

ε ⊗ idf(Z) is also an isomorphism e(Y ) ⊗ f(Z)
∼→ e(Y ′) ⊗ f(Z) as wanted in (a).

The proof of (b) is similar. �

7.5. Corollary. Up to isomorphism in T, the object g(Y,Z) = e(Y ) ⊗ f(Z) only
depends on the subset Y ∩ Zc in Spc(K). �

7.6. Remark. Let X be a (spectral) topological space. We could call A ⊂ X trop-
beau if it is the intersection of a Thomason subset and the complement of a Thoma-
son subset : A = Y ∩ Zc, with Y,Z ∈ Th(X). Every Thomason is trop-beau. By
Corollary 7.5, for A trop-beau, we can define a ⊗-idempotent g(A) in T as

(7.7) g(A) := e(Y )⊗ f(Z)

for any choice of Y, Z ∈ Th(SpcK) such that A = Y ∩Zc. It is easy to check that if
A,A′ ⊂ Spc(K) are trop-beau subsets then so is A∩A′ and g(A∩A′) ∼= g(A)⊗g(A′)
in T. Indeed, say A = Y ∩ Zc and A′ = Y ′ ∩ (Z ′)c with Y, Y ′, Z, Z ′ ∈ Th(SpcK).
Then A ∩ A′ = (Y ∩ Y ′) ∩ (Z ∪ Z ′)c and Theorem 5.18 gives us that g(A ∩ A′) =
e(Y ∩ Y ′)⊗ f(Z ∪ Z ′) ∼= e(Y )⊗ e(Y ′)⊗ f(Z)⊗ f(Z ′) ∼= g(A)⊗ g(A′).

7.8. Lemma (See [30, Lem. 1.4]). For P ∈ Spc(K), the following are equivalent :

(i) The open Spc(K) r {P} is quasi-compact.

(ii) There exists s ∈ K such that {P} = supp(s).

(iii) {P} is a Thomason subset of Spc(K).

If this holds, then

(a) The singleton {P} is trop-beau (Rem.7.6). More precisely {P} = {P}∩(YP)c

where YP :=
{
Q ∈ Spc(K)

∣∣P 6⊂ Q
}

is the Thomason subset such that
KYP

= P, that is, YP = supp(P); see the Classification Theorem 5.9.

(b) For any s ∈ K such that supp(s) = {P}, we have s⊗ e({P}) ' s.
(c) The idempotent g({P}) = e({P})⊗ f(YP) (see (7.7)) is non-zero.

Proof. The equivalence (i)⇔(ii) is [2, Prop. 2.14], (i)⇒(iii) is trivial and (iii)⇒(i) is
easy, as in the proof of Prop. 7.13 (iv)⇒(v) below. Now, suppose (i)–(iii) hold. The

equality {P} = {P} ∩ (YP)c follows from {P} =
{
Q
∣∣Q ⊂ P

}
(Rem. 5.4) and from

(YP)c =
{
Q
∣∣P ⊂ Q

}
. Moreover, it is easy to check that YP = ∪a∈P supp(a) =

supp(P), as in Theorem 5.9. So YP is Thomason and we get (a). For (b), since s ∈
Ksupp(s) = K{P}, we have that s ∈ 〈K{P}〉 = Im(−⊗e({P})). Now, for (c), suppose

ab absurdo that g({P}) = 0. Then 0 = s⊗g({P}) = s⊗e({P})⊗f(YP) ' s⊗f(YP)
by (b). This implies s ∈ Ker(− ⊗ f(YP)) = 〈KYP

〉 = 〈P〉. So, s ∈ K ∩ 〈P〉 = P

(Thm. 4.1 (a)). The latter reads P /∈ supp(s) which contradicts supp(s) = {P}. �
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7.9. Definition. Under Hypotheses 1.1, a prime P ∈ Spc(K) is called visible if
it satisfies the equivalent conditions (i)–(iii) of Lemma 7.8. We define the residue
object at P as the ⊗-idempotent g({P}) of (7.7), that is :

(7.10) κ(P) := g({P}, YP)
def.
= e({P})⊗ f(YP) .

7.11. Example. Let p be a prime number and T = SH(p) the p-local stable homo-

topy category. As in Exa. 5.2 (1), the primes of K = SHfin
(p) are exactly

C∞ = 0 ⊂ · · · ⊂ Cn ⊂ Cn−1 ⊂ · · · ⊂ C2 ⊂ C1 ⊂ C0

where Cn = (Pp,n)(p) ⊂ SHfin
(p) is the kernel of the nth Morava K-theory at p, for

n ≥ 0, see [5, Thm. 9.1]. There is a unique closed point {C∞} but there is no

s ∈ SHfin
(p) such that supp(s) = {C∞} for this would mean s ∈ ∩n≥1Cn and the

latter intersection is zero, contradicting C∞ ∈ supp(s) which reads s /∈ C∞ = 0. In
other words, the prime P = C∞ is not visible in the sense of Definition 7.9.

7.12. Example. Let R be a local ring and T = D(R) as in Ex. 1.2 (2). Un-
der Spec(R) ' Spc(K), the maximal ideal m ⊂ R corresponds to the triangular

prime P = 0. So, e(YP) ∈ 〈P〉 = 0 and f(YP) = 1. Hence, κ(P) = e({P}) is a left
idempotent. It is therefore not to be confused with the residue field R→ R/m.

7.13. Proposition. Let X be a spectral topological space (Rem. 5.11). The following
are equivalent :

(i) X is noetherian (any non-empty family of closed subsets has a minimal one).
(ii) Every open subset of X is quasi-compact.

(iii) Thomason subsets of X (Def. 5.7) coincide with specialization closed ones.

(iv) For every x ∈ X, the closed subset {x} is Thomason.

(v) For every x ∈ X, the open subset X r {x} is quasi-compact.

Proof. (i)⇔(ii) is an easy exercise. To see (ii)⇒(iii), note that a Thomason subset

is always specialization closed. Conversely, if Y = ∪y∈Y {y}, it is Thomason since

every X r {y} is quasi-compact by (ii). The implication (iii)⇒(iv) is trivial. For

(iv)⇒(v), if {x} = ∪i∈IYi with X r Yi quasi-compact, then x belongs to some Yi
hence {x} = Yi and Xr{x} = XrYi is quasi-compact. Let us prove the non-trivial
part : (v)⇒(ii). Let F =

{
Z ⊂ X closed

∣∣X r Z is not quasi-compact
}

. Suppose,
ab absurdo, that F 6= ∅. Let C ⊂ F be totally ordered with respect to inclusion
and let Z0 = ∩Z∈CZ. Then the open cover X r Z0 = ∪Z∈C(X r Z) either has no
finite subcover and therefore X rZ0 is not quasi-compact, or has a finite subcover
in which case XrZ0 = XrZ for some Z ∈ C (since C is totally ordered) and XrZ0

is therefore not quasi-compact again. In both cases, Z0 ∈ F . So Z0 is a lower bound
for C in F . By Zorn, it follows that F has a minimal element for inclusion. Since
X is spectral, this minimal element must be non-empty (X is quasi-compact) and
irreducible (the intersection of two quasi-compact opens remains quasi-compact).

Hence this minimal element is of the form {x}. But {x} ∈ F contradicts (v). �

7.14. Corollary. Every prime P in Spc(K) is visible (Def. 7.9) if and only if the
spectrum Spc(K) is a noetherian topological space. �

7.15. Example. Inspecting the examples of 1.2, we get :

(1) Spc(SHfin) is not noetherian as already observable p-locally, see Ex. 7.11.

(2) Spc(Dperf(X)) ' X is noetherian if the scheme X is (topologically) noetherian.
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(3) Spc(stab(kG)) ' VG is always noetherian, see [8, Vol. II, Thm. 4.2.1].

From now on, we assume Spc(K) noetherian, i.e. every P is visible. So we have

residue objects κ(P) = e({P})⊗ f(YP) in T for all P ∈ Spc(K).

7.16. Definition. Under Hypotheses 1.1, suppose that Spc(K) is noetherian. For
any object t ∈ T we define its (big) support as follows

Supp(t) = {P ∈ Spc(K) | t⊗ κ(P) 6= 0} ,
which we temporarily distinguish from the already defined supp(t) when t ∈ Tc.

7.17. Proposition. Under Hypotheses 1.1, assume that Spc(K) is noetherian.
Then the assignment t 7→ Supp(t) satisfies the following properties:

(a) For every compact object x ∈ K one has Supp(x) = supp(x).

(b) Supp(0) = ∅, Supp(1) = Spc(K).

(c) Supp(ti∈Iti) = ∪i∈I Supp(ti) for any set {ti}i∈I of objects of T.

(d) Supp(Σt) = Supp(t).

(e) Supp(t) ⊂ Supp(t′) ∪ Supp(t′′) for any exact triangle t→ t′ → t′′ → Σt.

(f) Supp(t⊗ t′) ⊂ Supp(t) ∩ Supp(t′).

Proof. For point (a) we have to prove that for a prime P and for a compact object
x one has x ∈ P ⇐⇒ x ⊗ κ(P) = 0. If x ∈ P then x ∈ 〈P〉 = TYP

and thus

x ⊗ f(YP) = 0 already. Whence x ⊗ κ(P) = x ⊗ e({P}) ⊗ f(YP) = 0. Conversely,
suppose that x ⊗ κ(P) = 0. Since P is visible, there exists s ∈ K such that

supp(s) = {P}, see Lemma 7.8, whose part (b) yields

0 = x⊗ s⊗ κ(P) = x⊗ s⊗ e({P})⊗ f(YP) = x⊗ s⊗ f(YP).

This implies that x ⊗ s ∈ TYP
∩ K = 〈KYP

〉 ∩ K = KYP
= P (using Thm. 4.1 (a)

again and YP = supp(P)). But s /∈ P since P ∈ supp(s), so x ∈ P by definition of a
prime ideal. This finishes (a). The rest is straightforward. �

7.18. Proposition. Under Hypotheses 1.1, suppose Spc(K) noetherian. Let Y ⊂
Spc(K) be a Thomason subset (i.e. specialization closed). Then we have

Supp(t⊗ e(Y )) = Supp(t) ∩ Y and Supp(t⊗ f(Y )) = Supp(t) ∩ Y c

for every t in T. In particular we have Supp(e(Y )) = Y and Supp(f(Y )) = Y c.
More generally if A ⊂ Spc(K) is trop-beau (Rem. 7.6) then Supp(g(A)) = A.

Proof. Notice first that if P ∈ Y then {P} ⊂ Y , since Y is specialization closed.

Thus, by Thm. 5.18 we have e({P})⊗ e(Y ) ' e({P}). This implies that t⊗ e(Y )⊗
κ(P) ' t⊗κ(P), for any t in T. Thus Supp(t⊗e(Y ))∩Y = Supp(t)∩Y . It remains
to show Supp(t ⊗ e(Y )) ⊂ Y . Since Supp(t ⊗ e(Y )) ⊂ Supp(t) ∩ Supp(e(Y )), it
is enough to show that Supp(e(Y )) ⊂ Y . Let us prove Y c ⊂ (Supp(e(Y ))c. Since

Y is specialization closed, if P /∈ Y then Y ⊂
{
Q
∣∣P /∈ {Q}

}
=
{
Q
∣∣P 6⊂ Q

}
, see

Rem. 5.4. This reads Y ⊂ YP, see Lemma 7.8. Hence e(Y ) ⊗ e(YP) ' e(Y ) and,

since e(YP)⊗ f(YP) = 0, we get e(Y )⊗κ(P) ' e(Y )⊗ e(YP)⊗ e({P})⊗ f(YP) = 0.
The latter means P /∈ Supp(e(Y )) as wanted. This gives the first desired equality.
The other equality is obtained in a similar manner, interchanging e’s and f ’s. �

7.19. Corollary. Under Hypotheses 1.1, suppose Spc(K) noetherian. Let t ∈ T

and P ∈ Spc(K). Let tP = t ⊗ f(YP) = L〈P〉(t) the localization of t at 〈P〉. Then

Supp(tP) = Supp(t) ∩ {Q ∈ Spc(K) | P ⊂ Q} in Spc(K/P) ∼=
{
Q
∣∣P ⊂ Q

}
. �
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7.20. Remark. Proposition 7.18 is the first indication of a so-called ⊗-theorem for
supports, see [10], that is, the hope to have Supp(t⊗ t′) = Supp(t)∩Supp(t′) for all
t, t′ in T. By Proposition 7.18, the ⊗-theorem holds when one of the two objects is
e(Y ) or f(Y ). We want to prove another case of this ⊗-theorem.

7.21. Lemma. Let s, s′ in T generate the same localizing ⊗-ideal of T, that is,
〈s〉⊗ = 〈s′〉⊗. Then, Supp(t ⊗ s) = Supp(t ⊗ s′) for all t ∈ T. In particular,
Supp(s) = Supp(s′).

Proof. We claim that for every v ∈ T we have v ⊗ s = 0 if and only if v ⊗ s′ = 0.
Indeed, Ker(v ⊗−) is a localizing ⊗-ideal and therefore contains s if and only if it
contains 〈s〉⊗. The claim follows from 〈s〉⊗ = 〈s′〉⊗. Now, for P ∈ Spc(K), apply
this claim to v = t⊗ κ(P). This gives Supp(t⊗ s) = Supp(t⊗ s′) as wanted. �

7.22. Theorem (Half ⊗-Theorem). Under Hypotheses 1.1 with Spc(K) noetherian,
let t be in T and x ∈ K be a compact object. Then

Supp(t⊗ x) = Supp(t) ∩ supp(x).

Proof. Since 〈x〉⊗ = 〈Ksupp x〉 = 〈e(suppx)〉⊗, the above lemma yields Supp(t ⊗
x) = Supp(t⊗ e(suppx)) = Supp(t) ∩ supp(x) by Proposition 7.18. �
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théorème de Riemann-Roch. Springer LNM 225. 1971.
[13] M. Bökstedt and A. Neeman. Homotopy limits in triangulated categories. Compositio Math.,

86(2):209–234, 1993.

[14] A. Bondal and M. van den Bergh. Generators and representability of functors in commutative
and noncommutative geometry. Mosc. Math. J., 3(1):1–36, 258, 2003.



GENERALIZED TENSOR IDEMPOTENTS 25

[15] A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257–

281, 1979.

[16] A. B. Buan, H. Krause, and Ø. Solberg. Support varieties: an ideal approach. Homology,
Homotopy Appl., 9(1):45–74, 2007.

[17] B. Calmès and J. Hornbostel. Push-forwards for Witt groups of schemes. Preprint 2008,

arXiv:0806.0571, to appear in Comment. Math. Helv.
[18] J. F. Carlson. The variety of an indecomposable module is connected. Invent. Math.,

77(2):291–299, 1984.

[19] I. Dell’Ambrogio. Tensor triangular geometry and KK-theory. Preprint, 33 pages, available
online, arXiv:1001.2637, 2009.

[20] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc., 142:43–

60, 1969.
[21] M. J. Hopkins and J. H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math.

(2), 148(1):1–49, 1998.
[22] M. Hovey, J. H. Palmieri, and N. P. Strickland. Axiomatic stable homotopy theory. Mem.

Amer. Math. Soc., 128(610), 1997.

[23] P. Jørgensen. A new recollement for schemes. Houston J. Math., 35:1071–1077, 2009.
[24] B. Keller. A remark on the generalized smashing conjecture. Manuscripta Math., 84(2):193–

198, 1994.

[25] H. Krause. Smashing subcategories and the telescope conjecture—an algebraic approach.
Invent. Math., 139(1):99–133, 2000.

[26] H. Krause. Localization for triangulated categories. In Triangulated categories, volume 375

of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2010.
[27] L. G. Lewis, Jr., J. P. May, M. Steinberger, and J. E. McClure. Equivariant stable homotopy

theory, volume 1213 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[28] H. R. Margolis. Spectra and the Steenrod algebra, volume 29 of North-Holland Mathematical
Library. North-Holland Publishing Co., Amsterdam, 1983.

[29] H. Miller. Finite localizations. Bol. Soc. Mat. Mexicana (2), 37(1-2):383–389, 1992. Papers
in honor of José Adem (Spanish).
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