Math 222A WwWo3 C.

Free algebras

1. The concept

Definition. Let V be a variety. The algebra F'is freein V on ¢1,...,g, if
(i) FeV,
(ii) F is generated by ¢1, ..., g,, and

(iii) the only term relations holding between g1, . .., g, are those that hold
for all n-tuples in all algebras in V, i.e., are the laws holding in V.

(In examples generators may also be labeled g, h, k or a,b, ¢, etc.)

2. Examples

#1. In a diagram of the free distributive lattice FDL(3) (Figure 1), if the
generators are gy, g, g3 you can see that

(1 Vg2) AN(91Vg3)A(g2V g3) = (g1 ANGg2) V(91 Ag3) V(g2 gs3).

Once it is known that this lattice is indeed a free distributive lattice on three
generators, then it follows that this law holds in all distributive lattices:

(3}'1 V CCQ) N (.fL'l V Ig) A (.’EQ V 3','3) = (ZCl A .%'2) V (371 A .’Eg) V (CCQ N IL'3)

#2. The free Boolean algebra FBA(3), corresponding to a Venn diagram
with three circles. It has 8 atoms and 256 elements.

#3. The free modular lattice FML(3) shown in Figure 2. It has 28 elements.

#4. The free lattice FL(3) shown in Figure 3. It is infinite. Dashed lines
represent infinitely many elements not shown.

#5. The free abelian group on n generators is Z".

#6. The free group FG(2) consists of all finite expressions such as g2h~3gh?,
with appropriate equalities.

#7. Every vector space is free, with generators being any basis.

#8. For a given type 7, the term algebra T,(n) is the set of all n-ary terms
of type 7, with operations being formal compositions. The generators are
the variable symbols z4,...,z,.
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Figure 1: FDL(3)

3. The universal mapping property

Proposition. If F is free in V on ¢1,...,9, and A is any algebra in V' and
ai,...,a, € A, then there is a unique homomorphism ¢ : ' — A with
f(g;) = a; for each i. (In other words, you can aim the generators of I at
any elements of any algebra in V' and find a homomorphism that takes the
generators there.)

Corollary 1. Up to isomorphism, there is only one free algebra in V on n
generators.

Let us call this algebra Fy (n).

Corollary 2. Every n-generated algebra of V is a homomorphic image of
Fv(n)

Corollary 8. If Fy(n) is finite, then it is the largest n-generated algebra in
V', and the only one of its size (up to isomorphism).
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Figure 2: FML(3)
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(aVb)A(aVe)A(bVe)

M+:

=(anb)V(aAc)V (bAc)

M_

Figure 3: FL(3)
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4. Existence of free algebras in V = Var(A)

Let the free algebra on n generators in Var(A) be denoted F4(n).
Theorem (Birkhoff) F4(n) can be constructed as follows:

Let A be the set of all functions § : {1,...n} — A, and let P = A%.
Fori=1,...,nlet g; € P be the element whose d-th coordinate is 6(¢).
Let F' be the subalgebra of P generated by g1, ..., gx,.

Then F' = Fu(n).

Ezample. To generate Fo(3) (= FDL(3)), where 2 is the 2-element lattice,
proceed as shown in Figure 4.

Row coordinate values using | expression
1:7]0 1 01 01 0O 1] gen |g
210 01 10 01 1| gen |h
3310 0 001 1 1 1| gen |k
4:10 0 01 0 0 0 1| 2A1 |[gAh
500 1.1 1 0 1 1 1|2Vl |gVh
6:/0 0 0 0O O 1 0 1] 3A1 |gAk
77/0 1 0 1 1 1 1 13Vl |gVEk
810 0 0 0 0 0 1 1] 3A2 |hAk
9910 0 1. 1 1 1 1 1|3V2 |hVE
10: /0 0 0 0 0 O O 1] 4A3 [gAhAKk
11: |10 0 0 1 1 1 1 1| 4v3 |(gANh)VE
12210 0 0 0 0 1 1 1] 5A3|(gVh)AEk
13:(0 111 1 1 1 1|5VvV3 |gVhVk
14:10 0 1 1 0 1 1 1|6V2 |(9gAk)Vh
15:/0 0 01 0 1 0 1|6Vv4 |(gAh)V(gnk)
16:/0 0 01 0 0 1 1| 7A2 |(gVk)Ah
17210 1 01 0 1 1 1| 7A5 |(gVh)A(gVEk)
1810 0 0 1 0 1 1 1|11A5|((gAh)VE)A(gVh)

Figure 4: Construction of FDL(3) as F»(3)

As another example, Figure 5 shows the table obtain for A = Zj3 under
subtraction and for n = 2:

The rows form the free algebra F4(2) inside A°. Of course, this example is
really a disguised version of an additive group.
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row 9-tuple from? | expr
R11012012012| gen |g

R2 (000111222 | gen |h

R3 1000000000 |R1-R1|g—g
R41012201120|R1-R2|g—nh
R51021102210|R2R1|h—g

R6 1021210102 |R1-R5|g—(h—g9)
R71021021021|R3-R1|(g—9g)—g
R8|000222111|R3R2|(g—g)—nh
R9 (012120201 |R4-R2|(g—h)—nh

Figure 5: Construction of Fiz (2) under subtraction

5. Existence of free algebras in arbitrary varieties

Proposition. For every variety V' and every n there exists a free algebra in V'
with n generators. In other words, Fy (n) always exists.

Qutline of proof #1: The method of saving term relations in common.

This is a generalization of the “table” method (above) for a single algebra:
We start by considering all functions § : {1,...,n} — A where A runs
through all algebras in V. Since V is too large to be a set, there are also too
many §’s, so we restrict our attention to cases where the image of  generates
A, and we remark that up to isomorphism there is only a set (rather than a
class) of ways in which an image of such a § can sit inside the A it generates.
Let A consist of one ¢ from each isomorphism class. Then inside A®, for
i=1,...n let g; be the element whose §-th coordinate is 6(¢), and let F' be
the subalgebra of A% generated by gi,...,¢,. Then we remark that F has
the Universal Mapping Property (UMP), so is free. I call this the method
of “saving relations in common”, because the only relations ¢ = u between
the g; are those true in every factor, and the factors account for all ways
that n elements of an algebra in V' can be related. As you see, there are
two elements in this proof: choosing the isomorphism types and taking the
subalgebra of a product.

Qutline of proof #2: The method of overshooting.

For T = T,(n) (the algebra of all terms in n variables), let F\ (n) = T/6y,
where 6y = N{# € Con(T) : T/§ € V}. Here 6, is the least congruence
relation 6 on ¢ such that 7/6 € V. One can show that Fy/(n) inherits the
UMP from T, which is free in the variety of all algebras of type 7. I call
this the “overshooting” method: Since 7' is free but much too big, you have
overshot, and you must trim 7" down to where it fits in V| by taking 7" modulo
a congruence relation.
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6. Infinite generating sets

Everything discussed above works for the case of infinite generating sets
gi,© € «, where « represents any cardinal number. For example, we can
make Fy(Rg). Even for infinitely many generators, though, every term ¢ still
involves only finitely many of the variables.

7. Application to construction of varieties

For a class K of similar algebras, let S(K), P(K), and H(K) denote the
classes constructed from IC by taking respectively subalgebras, products, and
homomorphic images of members of K.

Theorem (G. Birkhoff) A class V of similar algebras is a variety if and only
if V is closed under S, P, and H.

Corollary (Birkhoff-Tarski) For any class K of similar algebras, Var(K) (the
smallest variety containing KC) is obtainable as Var(K) = HSP(K), meaning
H(S(P(K)))-

8. The free 2-generated group in the quaternion group

variety (to be discussed in lecture)
Let F' = Fy(2) for V = Var(Dg) = Var(Qs).
1

Laws determining V are z* = e, 2%y = ya?.

Let a,b be generators of F and let ¢ = (ab) ™.

Every element of F has the form a’b/a*b%c*™, where 0 < i, 75, k,¢,m < 1.

F is the semidirect product of Zy x Z, by Z4 via powers of o(u, v) = (u+v,v).

See Figure 6.
9. Problems

(Some of these problems depend on additional material from lectures.)
Problem C-1. Describe (a) the free 1-unary algebra on n generators;

(b) Fy(2), where V is the variety of 1-unary algebras with f3(z) = f?(z);
(c) the free 2-unary algebra on 1 generator;

(d) Fs(3), where S = (2, V), using the table method. (Here S is a semilattice—
a set with a single binary operation that is associative, commutative, and
idempotent. A semilattice can also be defined as a set with a partial order
such that any two elements have a least upper bound. Thus one way to

obtain a semilattice is to take a lattice and ignore the meet operation, as has
been done to make S.)
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<aa b27 C2> <(1,2, ba C2> <(1,2, b2a C)

(a,b?c?)  {(ab?, b*c?)  (b,a®c?) 2022 (a®h,a*c®)  (d’c,a®V?)  {c,a’b?)

(a?,0°c*)  (a®,b%) __(a’V?, a’c?)

Figure 6: Con(F), the lattice of normal subgroups of F
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Problem C-2. Theorem. In a group G, every commutator a~'b~lab is a
product of squares.

Proof #1. Let S = {products of squares}. Observe that S is a normal
subgroup. Moreover, G/S satisfies 22 = e and so is abelian. Then in G/S,

@15 'ab = &. This is the same as saying that in G, a='b~ab € S.

This proof was indirect. A more direct proof would be to exhibit a law
ey = (L..)%(...)%...(...)? true in all groups, where each (...) con-
tains some expression in x,y.

(a) Before attempting to give such a proof, explain why there must exist
a direct proof of this form.

(b) Somehow or other, find the direct proof.

Problem C-3. For Murskii’s algebra M, suppose you want to compute
Fy(2), using the table method. (a) Show what generating rows you would
use. (b) Compute new rows in some reasonable order, labeling each row with
the expression in the generators that produced it, until you generate a row
that is already there. What law have you found? (c) If your law was in one
variable, continue further until you get a law involving two variables. (d)
Actually, Fjs(2) has 11 elements. How many multiplications of rows would
be involved in computing the whole free algebra and verifying that you are
done?

Problem C-4. Two proofs of the existence of the free algebra Fy(n) are
described in §6 above. They sound very different. Nevertheless, they are
essentially the same. The problem: Explain why, by analyzing how the two
elements of the first one are really present in the second.

Problem C-5. (a) Suppose that an algebra F' has a given set of generators
91,---59n. Show that if F' has the universal mapping property for maps
into itself, then F' is free in some variety V. (Thus being free is in effect an
absolute property of an algebra, without having to name a variety containing
it.)

(b) An achievement of recent years was the solution of the restricted Burnside
problem: For any k£ and n, there is a largest finite group with n generators
that obeys ¥ = 1. (There could also be infinite groups fitting this descrip-
tion; it’s just that there is a largest finite one.) Is this largest finite group
necessarily free? (Discuss.)

Problem C-6. Let V be the variety of idempotent semigroups: 1-binary
algebras whose operation is associative and obeys the law 22 = z.
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By experimenting with expressions, make a conjecture as to whether Fy (3)
is finite or infinite. Explain briefly how you arrived at your answer.

Problem C-7. The term algebra T, (n) is described in §3 above; in §6 it is
used in the second proof of the existence of free algebras in a variety.

For the variety V of 1-unary algebras obeying the law f3(z) = f°(z) and for
n = 1, explicitly describe T7-(1) and all # € Con(7;(1)) giving a quotient in
V. (Here 7 = (1).)

Problem C-8. Consider the “constructions” H, S, P on classes of algebras.

(a) Say which containment relations between pairs of constructions must
hold, e.g., SH(K) C HS(K). (All the valid relations have easy proofs, but it
is not required to write them down. Interpret H, S, P up to isomorphism.)

(b) For one such potential relation that does not hold, find a counterexample,
with brief proof.

Problem C-9. Let F = F(,(2). Refer to Figure 6. (a) Find a normal
subgroup N of F such that F/N = Zy x Z,. (b) Find a normal subgroup N
such that F//N = Ds. Find a normal subgroup N such that F//N = Qg. Find
the commutator subgroup F’ of F. (Determine the order of each subgroup.
Recall the Correspondence Theorem, which says that the subgroups of F
that contain N form the same diagram as the subgroups of F//N; the same
is true if just normal subgroups are considered. From the previous problem
you know that for abelian 2-groups (groups whose order is a power of 2),
the group can be identified from the subgroup diagram. Recall that F' is
contained in every N for which F'//N is abelian.)

Problem C-10. Figure 7 shows homomorphisms of FML(3) onto FDL(3)
and M3, determined by mapping generators to generators.

On a copy of Figure 7, indicate ker o and ker 3. (You will need to decide
which elements go to which, but you need not write this information down.
A congruence relation on a finite lattice is best diagrammed simply by dark-
ening the coverings that are “collapsed”, i.e., coverings between elements in
the same block. Use different coloring or markings for the two congruence
relations involved.)

Note. If there are surjections A — B and A — C whose kernels have
intersection 0, then A is embeddable in B x C, as we’ll discuss in class. Since
this is the case in Figure 7, you have shown the interesting fact that FML(3)
is embeddable in the direct product of FDL(3) and a single copy of Mj.
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Figure 7: Two homomorphisms
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Problem C-11. For the free algebra from the table shown in Figure 5:

(a) Whenever we subtract two rows we get a relation between generators,
which is then a law, usually nontrivial. What relation between generators,
and so what law, comes from the computation R&-R9=021102210 =
R5, where R8 means row 8, etc.?

(b) Suppose we want to use the universal mapping property to map F to A
with ¢ — 2, h — 1. Which column of the table gives the projection that
achieves this, and what is the homomorphism on F'?
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