Math 222A W03 DD.

## Jónsson's Lemma

### 1. A finite version

Theorem. (Foster) Let A be a finite algebra such that Var(A) is congruence-distributive. Let  $B \in Var(A)$  be finite and subdirectly irreducible. Then  $B \in \mathbf{HS}(A)$ .

Corollary. Under the same hypotheses,  $|B| \leq |A|$ , and if |B| = |A| then  $B \cong A$ .

Example. Each of the lattices  $M_3$ ,  $N_5$  satisfies a law that fails in the other.

*Proof* of the theorem:  $\operatorname{Var}(A) = \operatorname{HSP}(A)$ , so represent B as a homomorphic image of a subalgebra C of  $A \times \cdots \times A$ :  $C \subseteq A \times \cdots \times A$  and  $\phi : C \to B$  (a surjection). Here we know a finite product will do since B is the image of a free algebra  $\operatorname{Var}_A(n)$ , where n = |B|, and such a free algebra can be constructed by the table method. See the left-hand side of Figure 1.



Figure 1: Mappings for Foster's Theorem

Focus on Con(C). One of its elements is  $\ker \phi$ , which by the Correspondence Theorem is meet-irreducible. Some other elements are the kernels of the coordinate projections restricted to C:  $\ker(\pi_i|_C)$ . Of course  $\pi_i|_C$  may not map C onto A; its image is some subalgebra  $S_i$  of A.

Observe that

$$\cap_i \ker(\pi_i|_C) = 0 \le \ker \phi.$$

Recall that in a distributive lattice, a meet-irreducible element is meet-prime. Therefore  $\ker(\pi_{i_0}|_C) \leq \ker \phi$  for some  $i_0$ . This says that  $\pi_{i_0}(a) = \pi_{i_0}(a') \Rightarrow \phi(a) = \phi(a')$ . Therefore a well defined map  $\psi$  of the image of  $S_{i_0}$  onto B is obtained by setting  $\psi(\pi_{i_0}(a)) = \phi(a)$ . This map is the desired homomorphism showing that  $B \in \mathbf{HS}(A)$ . See the right-hand side of Figure 1.  $\square$ 

## 2. Ultrafilters

A filter is the same thing as a dual ideal in the lattice of all subsets of a set—a power-set Boolean lattice. An ultrafilter is a maximal dual ideal in such a lattice.

Recall that in a Boolean algebra, choosing one prime ideal gets us a little burst of terminology: the prime ideal is also a maximal ideal, and its complement is a maximal dual ideal (an ultrafilter, if in a power-set lattice).

Now let  $I = \omega = \{0, 1, 2, ...\}$  and let B = Pow(I). Recall that there are two kinds of prime ideals in B:

- Principal prime ideals. Each is generated by  $I \setminus \{k\}$  for some k.

  The complement of such a prime ideal is the "principal ultrafilter" consisting of all subsets containing  $\{k\}$ .
- Non-principal prime ideals. They exist, since the ideal  $I_0$  of all finite subsets of I, like any ideal in a distributive lattice, is the intersection of prime ideals, and none of them fit the description of a principal prime ideal. Conversely, any non-principal prime ideal must contain  $I_0$ ; otherwise it would omit some k and be contained in a principal prime ideal, and so, being maximal, would equal that ideal.

There are  $2^{2^{\aleph_0}}$  non-principal prime ideals, if we use the Axiom of Choice, but it is impossible to give even one explicitly!

We shall often treat I as an index set.

Choose a prime ideal in Pow(I) and keep it fixed for the rest of this discussion. We think of its members as "small" sets of indices. What is a "large" set of indices? There are two possible definitions:

- (1) A large set of indices is a set of indices that is not small—a member of the corresponding ultrafilter;
- (2) a large set of indices is the complement in I of a small set of indices.

But these two definitions are equivalent! Recall that for a prime ideal in a Boolean lattice, for each x exactly one of x or x' is in the ideal.

Question. For the principal prime ideal generated by  $I \setminus \{k\}$ , which subsets of I are small and which large? (It is as if only k counts for largeness.)

To summarize, if we have chosen a prime ideal, then with respect to it,

1. Every subset of I is either large or small (not both).

- 2. The complement in I of a large set is small and vice-versa.
- 3. The small sets form our chosen prime ideal, by definition. In particular,
  - the union of two small subsets is small;
  - a subset of a small subset is small.
  - The empty set is small.
- 4. If the prime ideal is nonprincipal, then any finite subset of I is small.
- 5. The large sets form an ultrafilter. In particular,
  - the intersection of two large subsets is large;
  - a superset of a large subset is large.
  - *I* itself is large.

# 3. Ultraproducts

An "ultraproduct" of algebras is their direct product modulo a congruence relation constructed from a nonprincipal ultrafilter. The congruence relation tends to collapse the product down to something that looks like a "generic" copy of the individual algebras, reflecting whatever features they have in common.

The construction is set-theoretic and actually works for sets with relations as well as for algebras. In detail:

Definition. Let I be an infinite index set. Let algebras  $A_i, i \in I$  be given. Choose a nonprincipal ultrafilter  $\mathcal{U}$  on I. On the direct product  $\prod_{i \in I} A_i$ , define an relation  $\equiv$  by saying  $\mathbf{a} \equiv \mathbf{b}$  when  $\mathbf{a}$  and  $\mathbf{b}$  agree on a large set of indices. The ultraproduct of the  $A_i$  is the direct product modulo  $\equiv$ :

$$A^* = (\prod_{i \in I} A_i) / \equiv$$
, or more simply  $A^* = \prod_{i \in I} A_i / \mathcal{U}$ .

There are several things to consider here:

- Does the phrase "agree on a large set of indices" mean that there is some large set  $J \subseteq I$  of indices such that  $a_j = b_j$  for all  $j \in J$ , or that the set of all  $i \in I$  with  $a_i = b_i$  is large? By the properties of large sets, it doesn't matter; the meanings are the same.
- It must be checked that  $\equiv$  is an equivalence relation. This follows from the properties of large sets.

- It must also be checked that  $\equiv$  is a congruence relation, so that the ultraproduct is an algebra.
- We say "the" ultraproduct even though the result does depend on the choice of  $\mathcal{U}$ .

Ultraproducts have some startling properties:

- 1. Any n-ary relation common to the  $A_i$  has a reasonable definition on their ultraproduct.
- 2. Any first-order sentence true in the  $A_i$  is true in their ultraproduct. (This extends to first-order formulas.)
- 3. An ultraproduct of fields is a field. (Why?)
- 4. The ultraproduct is unchanged (up to isomorphism) if finitely many factors are omitted. (Why?)
- 5. If all the  $A_i$  are finite and isomorphic, then  $A^*$  is a copy of the same algebra. (Why?)

#### Examples.

- (a) The ultraproduct of countably many copies of the field  $\mathbf{R}$  of reals is the field  $\mathbf{R}^*$  of "nonstandard reals". It is possible to do calculus using "infinitesimals" in  $\mathbf{R}^*$ .
- (b) The ultraproduct of countably many copies of the ring  $\mathbf{Z}$  of integers is the ring  $\mathbf{Z}^*$  of "nonstandard integers". Some of them are "infinite".
- (c) The ultraproduct  $\mathbf{Z}_2 \times \mathbf{Z}_3 \times \mathbf{Z}_5 \times \cdots / \mathcal{U}$  is a field of characteristic 0.
- (d) The ultraproduct of chains  $1 \times 2 \times 3 \times \cdots / \mathcal{U}$  is an infinite chain. (What does it look like?)

### 4. Jónsson's Lemma

"Jónsson's Lemma" would be called a theorem by most people, but it was called a lemma in the original paper and the name has stuck.

For a class K of similar algebras, let U(K) denote the class of algebras isomorphic<sup>1</sup> to ultraproducts of algebras in K.

Theorem. (Jónsson's Lemma) Let  $\mathcal{K}$  be a class of similar algebras such that  $\operatorname{Var}(\mathcal{K})$  is congruence-distributive. If  $B \in \operatorname{Var}(\mathcal{K})$  is subdirectly irreducible, then  $B \in \operatorname{\mathbf{HSU}}(\mathcal{K})$ .

<sup>&</sup>lt;sup>1</sup>Most authors write  $\mathbf{P}_U$ , following Jónsson, and some omit the use of isomorphic copies.

This theorem doesn't sound much different from the theorem that  $Var(\mathcal{K}) = HSP(\mathcal{K})$ , but it is really substantially different, in that **U** preserves many more properties than **P**.

Corollary. For a finite algebra A, if Var(A) is congruence-distributive, then for each subdirectly irreducible algebra  $B \in Var(A)$  we have  $B \in HS(A)$ .

Notice that this Corollary is a little stronger than the Theorem of  $\S 1$ , since it is not assumed to start with that B is finite. The conclusion is the same.

### 5. Problems

**Problem DD-1.** How can we be sure that an ultraproduct of chains is a chain?

**Problem DD-2.** Prove the Corollary of §4 from Jónsson's Lemma.

**Problem DD-3.** Let  $\mathbf{F}_4$  be the Galois field of 4 elements, as a ring. Find all the SI members of  $Var(\mathbf{F}_4)$ , up to isomorphism. (You may use the fact that  $\mathbf{F}_4$  is congruence-distributive.)

**Problem DD-4.** True or false? "Every lattice satisfies the same laws as its dual." If true, give a brief proof; if false, give a lattice that is a counterexample, with brief explanation. (Either way, it is not necessary to give any specific laws.)

**Problem DD-5.** Let  $\mathcal{K}$  be the class of all lattices of width at most 5. Show that each subdirectly irreducible member of  $Var(\mathcal{K})$  is in  $\mathcal{K}$ .