Math 222A Wo3 U.

Algebras

We use the term “algebra” to mean an algebraic system—a set with
operations.

1. Examples
(1) A group (G;-, ~',e).

(2) A ring (R;+,-,—,0); or a ring with 1 (R;+,-,—,0,1).
(3) A Boolean algebra (B;V,A,0,1,).
(4) A lattice (L;V, A); the lattice (R; max, min).

(5) A vector space (V;+,—,0, mult by r for each » € R) (if V is over the
reals).

(6) Perkins’ semigroup (S;-), with elements

ool btk ool [o v o) I3 0]

(7) The 1-unary algebra (A; f) with diagram >
(8) The tournament (T;V, A) with diagram g

(9) The Heyting algebra ({0,a,1};V,A,—,0,1).

|0 a b
g . 00 0 O
(10) The Murskii 1-binary algebra (M;-) with table alo 0 a
b0 b b
(11) Tarski’s high-school-algebra algebra (w;+,-,1,1).
(12) Shallon’s graph algebra (G U {0};-), G = Q Q O
O
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(13) The relation algebra (Pow (S x S);U,N,0,1,",0, Y, A) (S any set).
(14) The implication algebra (2; —).
(15) The lattice-ordered group (Z; A, V,+, —, 0).

(16) The set algebra (S;) (set S with no operations).

(17) The 1-binary algebra ({0, 1,2};-) with table

0
1

N = OO
— O N
O DN =N

2. Some sets of laws

[1] Defining laws for groups: A group is an algebra . .. satisfying the laws ...

[2] Defining laws for lattices: A lattice is an algebra ... satisfying the laws

[3] Defining laws for relation algebras: A relation algebra is an algebra
(R;V,N,0,1) o, Y A) such that

(i) (R;V,A,0,1) is a Boolean algebra,
(ii) o is associative;

(i) Acx=x20A =ux;

(iv) Y is a Boolean automorphism, z ¥ Y =z, and (zoy) Y=y Y ox Y;
(

V) (oy) Az <wo(yA(xoz).

[4] Defining laws for Heyting algebras: A Heyting algebra is an algebra

(H;V,NA,—,0) such that

i) (H;V,A,0) is a lattice with 0;

) zA(x—y) =zAy;
i)zA(y—=2)=zA((zAy) = (A 2));
iv) zA ((z ANy) = x) = 2.

(
(
(
(

[5] Defining laws for implication algebras: An implication algebra is an alge-
bra (A; —) such that

(i) (z=y) = 2=z
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i) (z—y)sy=(y—2) >

i)z — (y—2)=y— (z — 2).

[6] Tarski’s “high-school identity problem”: Do these laws imply all laws of
(wyz +y,zy,2¥,1)7 This was solved; the answer is negative.

r+y=y+=zx Ty = yx z+(y+z2) = (z+y)+z z(yz) = (zy)z
z(y+z)=ay+axz 2V =avz® (zy)®=z*y* (29)* = zW?)
x-l=z =z 1 =1

[7] Robbins’ Problem: Do these laws define Boolean algebras? The answer
is “yes”; the proof was found by computer in 1996.

(i) V is commutative;
(ii) V is associative;

(iii) (zVy) V(eVvy)) ==
3. Algebras and basic constructions

e A function f : A™ — A is an n-ary operation on A; n is its “arity.”

(For n =0,1,2,3 we say “nullary”, “unary”, “binary”, “ternary”.)

e An algebrais a set A with a given family of operations f, (y € I'), called
the “basic operations” of A. Officially, the algebra is (4; f,,v € T).
Texts often use a separate letter to distinguish the algebra from the

set, but we’ll follow the informal practice of group theory and use A
for both.

o The type of (A; f,,v € I') is the function 7 : I' — w given by 7(v) =
n.,, the arity of f,. Two algebras of the same type are similar. In
discussions involving more than one algebra, we’ll normally assume
that all the algebras are similar. Usually I' will be finite; if |I'| = m,
then it is simplest to choose I' = 0,...,m — 1 and write the n, as a
sequence.

For example, the type of a Boolean algebra (B;V, A,0,1,") can be writ-
ten (2,2,0,0, 1).

e A subalgebra of an algebra A is a subset S C A that is closed under all
the basic operations of A.

e An algebra A is said to be generated by its elements ¢i,..., g, if the
smallest subalgebra of A that contains all the g; is A itself.
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e A homomorphism ¢ : A — B between similar algebras is a map com-
patible with the basic operations of A and B.

e The direct product of a family of similar algebras, A; x A5 or more gen-
erally Hver A,, is the set-theoretic cartesian product with operations
computed coordinatewise.

e A congruence relation on A is an equivalence relation 6 on A that is
compatible with the basic operations of A.

e For a congruence relation # on A, the blocks of # form an algebra A/6 of
the same type, with a natural surjective homomorphism n : A — A/#.

4. Terms and varieties

e Atermtort(xy,...,z,) of type 7 is a formal expression as a string of
symbols, defined recursively as follows, starting from variable symbols
xi,...,T, for 7:

(a) Each z; is a term, and

(b)ifty,...,t,, areterms, soisf,(t1,...,t,, ), where £, and the commas
and parentheses are symbols and v € T'.

A term ¢ in variable symbols z1, .. ., z, is often described by t(x1, ..., z,).
For algebras with familiar notations we use those notations instead; for
example, a group term might be written as x; (x5 x3).

e For elements ay,...,a, of an algebra A and term ¢(z1,...,x,), the
value t(ay, . .., ay) is the element of A obtained by using the operations
of A while following ¢(z1,...,z,) as a recipe.

Thus t induces a function on A®™ — A. The functions so induced are

called the n-ary term functions on A. (For polynomial functions, see
below.)

e A term relation t1(aq,...,a,) = ta(aq,...,a,) is an equation holding
for a particular n-tuple of elements of A.

e A law is a formal equation t; = ty or t1(xy,...,2,) = ta(z1,...,2y),
with (Vz1)...(Vz,) understood. Many authors write ¢; & t; to dis-
tinguish such formal laws from equations involving elements. The law
t1 =ty holds in A when all n-tuples a4, ..., a, from A satisfy the term
relation t1(ay, ..., a,) = ta(aq, ..., a,).

We also say A satisfies t; = ty, or A is a model of t; = t,, or write
A ): tl == tg.
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o A wariety of algebras of a given type is the class of all models of some
set of laws. Examples are the varieties of all groups, of all abelian
groups, of all lattices, of all distributive lattices, and of other kinds of
algebras whose laws are given in §2.

If A is an algebra we write Var(A) for the variety determined by all
laws holding in A, which is the smallest variety containing A.

e A polynomial or polynomial function on A is a term function in which
some entries may be held constant. For example, if A = R as a ring,
f(z) = 2z = x + x is a term function while g(z) = 7z is not a term
function but is a polynomial function, obtained from the term function

h(z,y) = zy by g(z) = h(r, ).

5. Some theorems

Familiar theorems from group theory all generalize, except that in groups we
focus on normal subgroups, but for algebras in general we focus on congruence
relations, a generalization of the coset decomposition of a normal subgroup.
The reason is that in groups the whole coset decomposition is determined
by knowing the block containing the identity element, while for algebras in
general no one block determines the rest.

e The subalgebra of A generated by gi,..., g, is the set of elements of
the form t(gy, ..., gn) for some term ¢ in n variables.

e The image of a homomorphism is a subalgebra.

e The set Con(A) of all congruence relations on A is a lattice, the con-
gruence lattice of A.

e For § € Con(A), the set A/0 of blocks is an algebra, in an obvious way,
of the same type as A.

o If : A — B is a homomorphism, then the equivalence relation on A
induced by ¢ is a congruence relation, which we call ker ¢, the kernel

of ¢.
Observe that if # € Con(A) and n: A — A/ is the natural surjection,
then kern = 6.

o If $ : A — B is a surjective homomorphism, then B = A/ker ¢ (the
first isomorphism theorem).

Thus we have an “internal description” of all the homomorphic images
of A, up to isomorphism.
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o If  : A — B is a surjective homomorphism, then the congruence
relations on B correspond one-to-one to the congruence relations on A
that contain ker ¢ (the correspondence theorem).

e For a direct product P = Hver A,, for each v € T the coordinate
projection 7, : P — A, is a surjective homomorphism.

6. Problems

Problem U-1. For each of these algebras K, find (i) a 1-variable law of the
algebra that does not hold in all algebras of the same type, and (ii) (if you
can) a law in 2 or more variables that is not an obvious consequence of a
1-variable law of the algebra. No proofs are required.

(a) Perkins’ semigroup;
(b) Murskii’s 1-binary algebra;
(c) Shallon’s graph algebra [note: the operation is idempotent];
(d) the permutation group Sj.
(e) the tournament (8).

(A tournament is a directed graph in which every two vertices are joined
by a single edge oriented one way or the other. It can be envisioned as a
record of who won each match in a “round-robin” tournament, where each
player has played every other player once—the arrow points towards the

player who won. A tournament can be made into an algebra by letting =V y
be the winner and z A y the loser of the game between = and y.)

Problem U-2. For the 1-unary algebra (A; f) of Example (7), find its equa-
tional theory (the set of all laws that hold). You’ll need to consider the
possibilities f*(z) = f™(y) and f"(z) = f™(z) (m > n > 0). Sketch your
reasoning.

Problem U-3. For the two-element group Cy = {e,a}, invent a proce-
dure for telling whether a given group law holds in Cs. (For example,

((zy)z=") ' =27 (2y)?)

Problem U-4. For each of the algebras of examples (4)(for R), (6), (7), (8),
(10), (12), (15), (16), (17) in §1, comment on its subalgebras. If there are
just a couple, say what they are; if there are many, either describe them all
or describe a typical one. No proofs are required.
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Problem U-5. Of the binary operations involved in the examples from §1,
list those that are not commutative.

Problem U-6. Prove the following in an arbitrary lattice L:

(a) If t(xq,...,2,) is a lattice term and Iy, ..., I, are ideals of L, then in
Ideals(L) we have

t(Iy,...,I,) ={a€L:a<t(i,...,i,) for some iy € I1,...,i, € I,}.

(b) If L obeys a lattice law ¢ & u, then so does Ideals(L). (Thus Ideals(L) €
Var(L).)
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