Math 149 Wo02 X.

Interpolation for polynomial parametric curves

1. Parametric curves in general

Let’s work with curves in R?, although curves in R? are treated the same.
Recall that a curve given parametrically is the same thing as a vector-valued
function P(t), i.e., a function P : R — R? or a function on just part of R to
R?. We can either write P(t) directly or write the function using coordinates:
P(t) = (x(t), y(t)).

The curve in R? is really the image of the function, or in other words,
the path swept out by the moving point described by P(t), if you think of ¢
as time. Usually, though, we just say “the parametric curve” when we mean
the function P(t).

In this course, such functions are usually given one of two ways:

1. By giving the coordinate functions themselves:
Ezample 1.1 . P(t) = (cost,sint)
Ezample 1.2 . P(t) = (¢3,t?) (Figure 1)

o

Figure 1: Examples 2 and 4

2. By expressing the curve as a linear combination of given points, where
the coefficients are functions of £. The curve might go through some of
the points or it might not.

Ezample 1.3 . P(t) = (1 —t)P, +tP, (a line).
Ezample 1.4 . P(t) = (t* — 2t + 1) Py + (2t — 2t*) P, + t*P, (Figure 1).

An expression such as the one of Example 1.4 may look unfamiliar at
first, but notice that for each t, each coefficient is some particular number,
so this kind of computation is really nothing new. For instance, in Example
4, P(%) - 1P0+%P1+%P2.

4
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We could call an expression of the second kind a time-varying linear
combination of points. In graphics the coefficient functions of ¢ are called
blending functions. For a curve given this way, it is easy to find the coefficient
functions:

Observation. For a curve P(t) = fo(t)Py + - - - + fu(t) Py, write P; = (z4,v;)
and P(t) = (z(¢),y(¢)). Then

Interestingly, x(¢) and y(¢) can also be regarded as linear combinations of

the functions f; with the numbers z; or y; as coefficients, instead of as linear
combinations of numbers with functions as coefficients.

In all applications in this course, the coefficient functions will add up to
1 at all times ¢ used . This property is needed to ensure that if the points P,
are translated by some vector b, then the curve is also translated by b. (See
the Exercises.)

2. Polynomial curves

By a polynomial curve in R"™ let us mean simply a parametric curve
given by a function P(t) for which each coordinate function is a polynomial.
Examples 1.2, 1.3, and 1.4 are polynomial curves. So is this curve:

Ezample 2.1 . P(t) = (1—1)3(4,1) + 3(1 —t)%¢t(0, —3) + 3(1 — t)#*(0, 3) +
t3(4,—1). (See Figure 2.)

Figure 2: Example 5

The degree of a polynomial curve is the maximum of the degrees of the
coordination functions. If a polynomial curve P(t) is described as a time-
varying linear combination of points, you can see that the degree of P(t) is
no larger than the largest degree of the functions f;(¢). (The degree could be
less, if powers of ¢ cancel when adding polynomials.)

X2



3. Interpolation

Interpolation for parametric curves means finding a curve P(t) that goes
through given data points at given times, as in Figure 3.

In other words, data consists of points Fy,..., P, and times tg,...,%,.
The problem is to find a parametric curve P(t) such that P(t;) = Py for
each k. As always, let’s assume we’re working in R?, although everything
works similarly in R" for any n.

Figure 3: An interpolated curve

But what kind of curve? There are actually several good possibilities, but
one of the simplest is to have P(t) be a polynomial curve. What degree should
we hope for? Because two points determine a line and three a parabola, it
seems reasonable to ask that for n + 1 data points P, ..., P,, the degree of
the curve should be at most n. This is always possible:

Theorem. 3.1 (Lagrange). For data points P, ..., P, and times %, ...,%,,
there is a unique polynomial curve P(t), of degree at most n, such that P(ty)
=P,...,P(t,) = P,, provided only that t,...,t, are distinct.

A problem fitting this theorem can be called a Lagrange interpolation
problem.

4. A plan

Because we’re starting with given data points, let’s look for a solution in
the form of a time-varying linear combination

P(t) = po(t)Po + - - + pp(t) Py

Here let’s use p; instead of f; to emphasize that the functions we seek are
polynomials in ¢. If each p; is a polynomial in ¢ of degree at most n, then
P(t) will be a polynomial curve of degree at most n, as required.
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How can we arrange to have P(ty) = Py? Easily: This happens if py(¢y) =
1 but pi(ty) = pa(to) = ... = pu(te) = 0, because then at time ¢y we get
P(ty) =1-Py+0-Pi+---4+0- P, = P,, as desired.

Similarly, we need p;(t) to have values at to, t1,...,t, of 0,1,0,...,0
respectively. Then we need po(t) with a similar property, and so on.

The desired values of py(t), ..., ps(t), more compactly, are

pi(t;) = 1 for each i, and
pi(te) = 0 for k # .

5. Construction of the functions p;(t)

To keep things simple, let’s start with the case where n = 2 and ¢, = 3,
t; = 5, to = 8, and let’s just try to find py(¢). Thus we want py(t) so that
po(3) =1, po(5) = 0, po(8) = 0.

As a first goal, let’s just try to make a polynomial that is zero at t = 5
and at t = 8 but not at ¢t = 3. That is easy: The function (¢t — 5)(t — 8)

works. It is nonzero at ¢ = 3 because the value there is a product of two
nonzero factors.

However, at ¢ = 3 the value is 10 and not 1 as desired. Fortunately, all
we need to do is to divide the function by the 10 and we’re done:

(t=5)(t—8)

po(t) = 10
To show where this result came from, we could write py as
_ (t=5)(t-8)

PO =E=5)E-8)

Now we’re ready for p;(¢). The same reasoning gives

pi(t) = % You can check that p; at ¢ = 3,5, 8 has values 0,1,0
. . _ (t=3)(t—5)
respectively. Similarly, ps(t) = B=3)(8=5)

Now it should be clear how to make py(%) ..., p,(t) for general n: p;(t)
is a fraction whose numerator is a product of factors (¢ —t;) except for j = i;
the denominator is a product of the same factors except with (¢; —t;) instead
of (t —t;). To write all this more compactly, it is handy to use a sign []
(capital pi) for a product, the same way that »_ is used for summation.

Theorem 5.1 . The solution to the polynomial interpolation problem can be
expressed as

P(t) = po(t)Py + - - - + pu(t) Py, where for each 4,
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wt) = 2= - TIi= 4

J#i

Proof of Theorem 5.1. Just substitute in ¢ = t;, and you will find that
each p; has the right value, and consequently P(t;) = P;. Observe that each
pi(t) has degree n. Each coordinate function of P(t) is a linear combination
of po(t), ..., pn(t) and so has degree at most n.

Proof of Theorem 3.1. The existence of the required solution is shown by
Theorem 5.1. The uniqueness is shown in the Exercises.

Note. The polynomials p;(t) depend only on n and the times %o, ...,%,,
and not on the data points P;. In Figure 4 are shown graphs of the polyno-
mials p;(t) for n =4 and times 0, 1,2, 3, 4.

po(t) 1(t) pa(1) ps(t) pa(t)

"\/‘\/‘\/\]
Figure 4: Graphs of basis polynomials

6. Examples

To find a curve of degree at most 2 such that P(—1) = (1,0), P(0) =
(0,0), and P(1) = (0,1):

We have n =2, t, = —1,t; = 0,1, = 1.

po(t) = ( (1 ;Et 1 )1) = %(tZ_t)
t—(—1))(t—1 9

- G

o= == e

P(t)zﬁ( - )(1,0) (t 1)(050)+%(t2+t)(051): (%(tQ_t)a%(t2+t))a
as shown in the diagram.
Figure 5 shows this and two other examples.

In the lower example with n = 10, observe that the function is so wavy
that it doesn’t follow the data points very well. This is a disadvantage
of working with polynomial functions of higher degrees. Moreover, by the
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Figure 5: Additional examples

uniqueness property (Theorem 3.1) there is no other polynomial curve that
has degree at most 10 and fits the data points.

7. Newton’s approach to interpolation

There is also an approach due to Newton for solving polynomial interpolation
problems by using “divided differences”. The method will be explained here
for the case n = 3, without proof, but it works the same for every n.

Suppose, then, that times tg, . .., 3 are given along with data points P, ..., P;.
As usual, we want a polynomial curve of degree at most 3 with P(¢;) = P,
for each 1.

Step 1. Compute quantities

_P-FR _DB-P _B-P
Por =T —4, > P =T, =5 Pon=%=%"
Step 2. Compute quantities

_ Py - Py _ Py —Ppy
Po1z = T, =1y Pro3 = ts—

Step 3. Compute the quantity

P123 _ P012

P0123 = ts — 1o

Step 4.

Let P(t) = P() + (t — to)P()l + (t — to)(t — tl)P()lz + (t — to)(t — tl)(t — tQ)P0123.
(For general n there would be steps 1 through n + 1.)
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The quantities P;_; are called divided differences. They can be thought of as
making a triangular table, as shown. A column of ¢-values has been added
for convenience. The boxes indicate the entries actually used in the last step.
(The other entries aren’t wasted, as they have been used in computing the
boxed entries.)

t| B | P ‘ P10 ‘ Piii1iv2i43

to || | Po]

tl P1 P012
Py

ta | P Pios

i3 || Ps

As you see, each entry P; ; with more than one subscript is obtained as a
quotient, where the numerator is the difference of the entries immediately
to the left (P4, ; — P, j—1), and the denominator is the difference of the
t-values for the outer subscripts (t; —t;).

This method is often easier to do by hand than the blending-function method,
and it is also easier to program, but it is less helpful in understanding other
computer graphics methods for curves.

Ezample: The second curve in Figure 5 has data points (0,0), (1,0), (1,1),
and (2,1). The table of divided differences is as follows. (The denominators
of  come from 2 — 0 and 3 — 1 and the 3 comes from 3 — 0.)

t P P ‘ Piit1,it2 ‘ Piitiiv2i43
01](0,0)

(1,0)
1| (1,0) (—
(0,1) (

2 (1,1) (
(1,0)

N
N
N—r

Wl
|
Wl
N

N
I
N
N—r

3 (2,1)
Thus the curve is P(t) = (0,0)+¢(1,0)+¢(t—1)(—3, 3)+t(t—1)(t—2)(5, —3)-
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8. Some useful properties of polynomials

Except as noted, it will be assumed that polynomials have real numbers
as coefficients, rather than any complex numbers. Some of these properties
will be useful for the Exercises; others are listed for the sake of completeness.

e Factor corresponding to a root. If f(¢) is a polynomial and « is a
root of f(t), then (¢t — a) is a factor of f.

(The reason: You can always do a long division of f(¢) by (¢t — a) to
get a quotient ¢(¢) and a remainder r(¢), which being of lower degree
than (¢ — a) is simply a constant r. Thus f(t) = q(t)(t — a) + r. Put
t = a; since f(a) = 0 you get 0 = 0+ r, so » = 0. In other words,
f(t) =q(t)(t —a), so (t —a) is a factor of f.)

e Number of roots. A nonzero polynomial of degree n has at most n
distinct roots.

(The reason: Not more than n different terms (¢ — a;) could be factors
of f(t), since f(t) is of degree n. Actually, this reason requires further
explanation: When you have factored out some of the terms (¢t —a;) for
roots a; of f(t) and you have an equation f(t) = (t—ay)(t—a2)...(t—
ar)q(t), you need to observe that the remaining roots of f(¢) are also
roots of ¢(t), so you can keep factoring.)

e Expression from function. If f and g are polynomials that are equal
as real functions, then they have the same coefficients.

(In other words, in talking about “equal polynomials” we don’t have to
say whether we mean equal as functions or equal as polynomial expres-
sions. By way of contrast, in modern algebra ones studies polynomials
with coefficients in finite fields; in this setting two polynomials with
different coefficients can give the same function.)

e Agreement in many places gives agreement everywhere. If two
polynomials f(t) and g(t) of degree at most n agree at n + 1 or more
values of t then f = g, i.e., f(t) = g(¢) for all .

(The reason: The values of ¢ at which f and g agree are roots of the
difference f(t) — g(t). If this difference is nonzero it can have at most
n roots.)

e Continuation property. If f and g are polynomials that agree on
an interval, then they are the same polyonomial.
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(For example, if f(t) = g(¢) for 0 < ¢ < 0.000001, then f(t) = g(t) for
all values of ¢.)

Unique interpolation property (Lagrange property). There is
exactly one polynomial f(t) of degree at most n that has given values
at n + 1 distinct values of ¢ (i.e., f(t0) = Yo, ..., f(tn) = Yn)-

(This is just a nonparametric version of Theorem 3.1. The uniqueness
comes from the agreement property above.)

Unboundedness: A nonconstant polynomial is unbounded. In other
words, if f(¢) is nonconstant there is no constant B such that |f(¢)| < B
for all t.

(The reason: If f(t) = c,t" +- - -+ 1t + ¢, with ¢, # 0, for large values
of ¢ the leading term c,t" overwhelms the other terms and makes the
value of f(t) large. More formally, if |c,t" + - - - + 1t + ¢o| < B for all
t with ¢, # 0, consider values of ¢t with ¢ > 0 and divide through by ¢
to get \cn—i—%"—i—---+§—3| < té’ Then let ¢ — oo. You get |c,| < 0, a
contradiction.)

Existence of real roots for odd degree. Any polynomial of odd
degree with real numbers as coefficients must have at least one real
root.

(The reason: Suppose the polynomial is f(z) and its leading coefficient
is positive. For a large negative value of ¢, f(t) < 0; for a large positive
value of ¢, f(¢) > 0. By continuity, in between somewhere there is a ¢
with f(¢) = 0. If the leading coefficient is negative, similar reasoning
applies.)

Existence of complex roots. Any nonconstant polynomial, with real
coefficients or with even complex coefficients, has at least one complex
root.

This is one statement of the Fundamental Theorem of Algebra. The
following fact is another, equivalent statement:

Complex factorization. If complex numbers are used, any polyno-
mial can be factored completely into linear factors:

f)=clt—a)(t —az)...(t—an)-
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e Complex roots of real polynomials. If a real polynomial is factored
into complex linear factors, the non-real roots occur in conjugate pairs.

Thus if there is one factor (¢ — (3 +2i)), then there must be one factor
(t — (3 —21)).

9. Problems

Problem X-1. Write Examples 1.3 and 1.4 in coordinate form. (For the
coordinates of the given points, just write P; = (;,v;)-)

Problem X-2. For the (non-polynomial) parametric curve P(t) = (cost, sint),
sketch the curve, the graph of x against ¢, and the graph of y against ¢, for
—r <t <3m.

Problem X-3. Find P(t) explicitly in the upper right example of Figure
5, by using basis functions. Assume that the data points are Py = (0,0),
P1 = (1,0), P2 = (1,1), and P3 = (2,1), with t; =14 fori = 0,1,2,3.

Problem X-4. Find a quadratic polynomial curve P(t) (or really, a poly-
nomial curve P(t) of degree at most two) such that P(—1) = (1,5), P(0) =
(2,1), and P(1) = (3,5), by using basis functions. Give explicit coordinate
functions z(t), y(t)-

Problem X-5. Find a cubic polynomial curve P(t) (or really, a polynomial
curve P(t) of degree at most three) such that P(0) = (1,0), P(1) = (2,1),
P(2) =(9,2), and P(3) = (28, 3). Use basis functions.

Problem X-6. Solve Problem X-5 using divided differences.

Problem X-7. Suppose that you want to make a parametric curve P(t),
polynomial or not, to interpolate data points P, with P(¢;) = P, for i =
0,...,n, and suppose that you plan to express P(t) as a linear combination
with time-varying coefficients. What conditions on the blending functions
(the coefficient functions) are sufficient to guarantee that P(t) does interpo-
late as required?

Problem X-8. Find the Lagrange blending functions of degree one.

Problem X-9. (a) Find a quadratic parametric curve that crosses the unit
circle z2 + y?> = 1 in four points. (b) Find a cubic parametric curve that
crosses the unit circle in six points. (In both parts, the equations should be

X 10



explicit but a graphical proof is sufficient. One method for (b): If you can
find a suitable graph y = ax® + bz? + cx + d, you can express the same graph
in parametric form as (¢,at® + --- +d).)

Problem X-10. Show that the unit circle 22 + y?> = 1 cannot be repre-
sented as a polynomial parametric curve. In fact, show that a polynomial
parametric curve of degree n > 0 cannot touch a unit circle in more than 2n
distinct points, much less follow the circle all the way around. For example,
a parabola cannot touch a circle in more than four points.

(Method: Suppose the curve is P(t) = (z(t),y(t)) of degree n. For any ¢ for
which P(t) is on the circle, we get z(¢)® + y(t)? = 1. Apply the agreement
property of polynomials from §8 to show that if more than 2n points of the
curve are on the circle, then all points of the curve are on the circle. Apply
the unboundedness property from §8 to show that this is impossible. Then
you have made a proof by contradiction.)

Problem X-11. (a) In contrast to the preceding problem, show that the
following method does give a parametrization of the unit circle (except for one
point) by rational functions (ratios of polymials): Calculate the point (z,¥)
where the line of slope m through the point (—1, 0) on the circle intersects the
circle a second time. Your answer will have x and y as rational functions of
m, say z(m) and y(m). Now write ¢ for m, to use a more familiar parameter.
Check that z(¢)? + y(¢)? is always 1.

(b) Which point of the circle is missing?

(c) Try some rational-number values for ¢; the corresponding x and y should
lead to some “Pythagorean triples” such as 3,4,5 with 32 + 42 = 52 and
5,12,13 with 52 + 122 = 132. Reduce each triple you get to lowest terms,
e.g., use 3,4,5 and not 6,8, 10. Find three triples in lowest terms other than
the ones just mentioned.

Problem X-12. Suppose that you have chosen a list fo(t),. .., f,(t) of blend-
ing functions, not necessarily polynomials, for which fo(t) +--- + fo.(t) =1
for all t with @ <t < b. Then given a list of points P, ..., P, you can make
a curve by using the functions f;(¢) as coefficients of a linear combination
P(t) = fo(t)Py + -+ + fn(t)P,. Explain how you know that this process
is compatible with affine transformations. In other words, show that if T
is an affine transformation and @; = T(P;) for each 7, then at all times ¢
with a <t < b you get T(P(t)) = Q(t), where Q(¢) is the curve made with
the same blending functions but based on the points @;. (Method: What
property of affine transformations and linear combinations is relevant?)
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Problem X-13. A useful observation is that a polynomial, say 1+ 2t + 7¢2 —

1
5t%, can be written as a matrix product [ 1 ¢t ¢* ¢ | 3
-5
Similarly, the polynomial curve (1 + 2t + 7t2 — 5¢3,4 — t +#2) can be written
1 4
2 -1
2 43
as [1 ¢ &2 £ ]| -
-5 0

As you see, the columns of the right-hand matrix represent the coefficients of
the x and y coordinate polynomials. (It is usually best to write polynomials
in this situation with increasing powers of ¢, although some texts do not.)

Express Example 1.2 in matrix form.

Problem X-14. Another use of matrices is to make a “matrix of points”,
a matrix in which each row represents a point. For example, if data points

50
Py, ..., P, are given, the corresponding matrix is P, = | ... |. Then a
P,
linear combination of these points with blending functions fy, ..., f, can be
expressed by the matrix product P(t) = [ fo(t) ... fa(t) ] P.

(a) Express Example 1.4 in this form, for the case Py = (7,2), P, = (—1,4),
P2 = (3, 6)

(b) Combine (a) with the method of the preceding problem to write the same
example in the form P(t) = [ 1 ¢ t* | MP,, where M is a certain matrix
of numbers. (Do not multiply out.)

Problem X-15. Complete the details in the proof of Theorem 5.1.

Problem X-16. A Van der Monde matrix is a matrix of the form

1t & ...
vo| 1 & 2ot
1 t, & ...

This matrix is (n+ 1) x (n + 1). The ¢; can be any numbers. For example,

[ 1 2 4 -|
1 3 9 is a van der Monde matrix.
[ 1 7 =2 J
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A theorem is that the determinant of a van der Monde matrix is the product
of the w terms (¢; —t;) with ¢ < 7, or symbolically, HKJ. (tj —t;). For
example, for a 3 X 3 van der Monde matrix, the determinant is (t; — o) (2 —
to)(ta — t1)-

(a) Verify this theorem in the case n = 2.

(b) Explain why a van der Monde matrix must be nonsingular if the numbers
to, ..., t, are distinct.

(c) Find the volume of the tetrahedron with vertices (8,8% 8%), (9,92, 9%),
(10,10%,10%), (11,112,113), using only arithmetic that is so easy you could
do it in your head.

(Method: Recall that the volume can be expressed as z of the absolute value
of a certain determinant whose last column consists of 1’s. Changing the
order of the columns does not change the absolute value of a determinant.)

Problem X-17. Here is a different approach to solving a Lagrange interpo-
lation problem. As usual, let points P; in R? and distinct times t; be given,
for 2 = 0,...,n. According to a preceding problem, a solution can be writ-
ten in the form P(t) = [ 1 ¢t ¢* ... t" | C, where C is some (n+ 1) x 2
matrix of coefficients. The interpolation conditions P(t;) = P; can then be
written as [ 1t 2 ... 7 } C = P,. These conditions can be combined
into a single matrix equation VC = P,, where V' is a van der Monde matrix.

(a) Explain why there must be a solution for the matrix C of coefficients and
why this solution is unique. (You may quote any needed properties of van
der Monde matrices.)

(b) Explain how you could solve Lagrange problems on a computer in this
way if a row-reduction routine were available.

Problem X-18. Prove the uniqueness part of Theorem 5.1: There is only one
polynomial curve P(t) of degree at most n for which P(ty) = Py, ..., P(t,) =
P,, where the P; and t; are any given points and distinct times.

(Method: Apply the uniqueness property of §8 to the coordinate polynomi-
als.)

Problem X-19. Using the “Agreement in many places” property in §8,
explain how you get the (a) the “Expression from function” property and (b)
the “Continuation” property.

Problem X-20. Find an example of a polynomial curve P(t) that goes
through data points that are in a rectangular window, such that the curve
wanders out of the window between two of the data points.
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(You should give explicitly the bounds of the window, the coordinate func-
tions of the curve, and the time at which the curve is outside the window.
Such an example will contrast with other kinds of polynomial curves to be
studied soon.)

Problem X-21. Consider the Lagrange blending functions py(t),. .., pn(t)
for given distinct tg,...,1,.

(a) Show that for all ¢, po(t) + - - - + pu(t) = 1.
(b) Show that for all ¢, topo(t) + t1p1(t) + - - - + tapp(t) = t.

(Method: In each case, try to use the agreement property from §8, applied
to the two sides.)

Problem X-22. Show that the Lagrange blending functions p;(¢) for given
distinct to, . . ., t, form a basis for the vector space of all polynomials of degree
at most n.

(Method #1: Because you already know the vector space has dimension
n + 1, it is enough to show that the p; are linearly independent. Suppose
some linear combination copo(t) + - - - + ¢,pn(t) = 0, for all ¢. Substitute in
various appropriate values of ¢ and see if you can show the ¢; are all zero.)

(Method #2: It is also enough to show that any f in the vector space is a
linear combination of the polynomials p;(¢). Given f, let ¢; = f(¢;) and show
that copo(t) + - - + cupn(t) = f(t) for n+ 1 different values of t. Then quote
the uniqueness property.)

Problem X-23. This problem shows that a polynomial curve of degree two
is a parabola, provided that it does not lie on a straight line.

(a) How can a parabola y = az? + bz + ¢ be expressed parametrically?

(b) Show that a parametric curve of the form (rt+s, at?+bt+c) is a parabola,
if r #0 and a # 0.

(Method: reparameterize the curve using u =rt +s,s0t=...)

(c) What does the graph of the derivative of a parametric curve of the form
given in (b) look like? Does the derivative curve go through the origin?

(d) Show that if P(t) is a polynomial curve of degree 2 and the graph of P’(¢)
does not go through the origin, then P(¢) is a parabola.

(Method: P'(t) has degree 1, so is a straight line. If P'(¢) does not go through
the origin, observe that there is a 2 x 2 rotation matrix R which rotates this
line to be parallel to the y-axis. The rotated curve P(t)R has derivative ...
since R is a constant matrix. Integrate to get an expression like that in (b)

for P(t)R.)
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(e) On the other hand, if the graph of P’'(t) is a line through the origin, then
show that P(t) itself lies on a straight line.

(Method: As in (d), rotate the derivative until its graph is parallel to the
y-axis, and then integrate.)

Problem X-24. The curve shown in Figure 3 is actually a polynomial curve
of degree 5 that solves a Lagrange problem with ¢; = 7 for each i. With
this information, write down an explicit formula for the curve. (Choose a
coordinate system with the origin at the lower left data point. Any scale is
acceptable. Do not attempt to simplify your answer.)

Problem X-25. A perfect unit circle can be given parametrically by P(t) =
(cost,sint). Suppose P,(t) is the parametric curve obtained by using instead
the Taylor polynomial approximations to cost and sint of degree at most n.
Sketch the curves described by P;(t) and P,(t). What do you think happens
as for larger and larger values of n? (Note: Since the Taylor expansion of cos ¢
has only terms with even powers of ¢, the Taylor polynomials of degrees, say,
8 and 9 are the same. Similarly, the Taylor polynomials for sin ¢ of degrees 7
and 8 are the same.)

Problem X-26. Suppose the cubic curve P(t) has P(0) = P, P(1) = Py,
P(2) = P, and P(3) = P;. Since a cubic curve is determined uniquely by
interpolating four points at given ¢ values, everything about P(t) should be
describable in terms of Py, ..., Ps.

(a) Give an expression for P'(0) in terms of Py, ..., P;.
(b) Give an expression for the middle value P(1.5) in terms of P, ..., Ps.

(Method: First use Lagrange to find an explicit expression for P(t) in terms
of the P,. Are your answers to (a) and (b) linear in the P;?)

Problem X-27. Show that every plane polynomial curve of degree k£ has a
mirror symmetry (perhaps not through the origin) for

(a) k=1,
(b) k=2,
(c) k= 3.
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