Math 117 S04 SOLNSS9.

Solutions to non-text problems in Assignment #9

I-3: I hope Diffie-Hellman worked for you. Remember, the mathematical
ideas are that

o (") =g"=(g"",

e if the prime p is huge, there is no known reasonably fast way of finding
a given ¢g° or b given ¢°

and the cryptological ideas are that

e one person knows ¢g* and b,
e one person knows ¢° and a,

e someone intercepting the messages instead sees only ¢® and g°.

(Comments:

The problem of finding a from ¢ is called the “discrete log problem” —
“log”, because for ordinary numbers to get from g to a you take log,, and
“discrete” as a contrast to “continuous”. (The real numbers are “continuous”
while finite fields are “discrete”, meaning that there is no concept of elements
being arbitrarily close to one another.)

The reason that p = 14737727 is a “toy” example, even though it seems
large by ordinary standards, is that on current computers it would be easy
to find a from ¢* just by trying all 14737726 possible values of a and seeing
which one gives the desired g¢°.

There is also the issue mentioned in class, that this basic version of Diffie-
Hellman is susceptible to the “man-in-the-middle” attack, where someone
gets in the communication stream between Alice and Bob and to Alice pre-
tends to be Bob and to Bob pretends to be Alice. This intruder then ends
up sharing a secret key with Alice and another secret key with Bob and can
read and relay messages between them without their realizing it. So to use
Diffie-Hellman in practice it is desirable to make modifications to get around
this problem.)

M-7: See the solution already given.
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O-1: Including o” as a check to make sure it’s 1, we get

1 =1

a = o

o? = o?
o =1 + «

ot = a + o?
a® =1 + a + o
b =1 o?
af =1

Here o’ = a(a+a?) =a?+a® =a?+ (1 +a) =1+ a+ a? etc.

O-2: (a) The usual, except that we can’t write “1,2,...” for the nonzero
elements. Instead, just call them ry,79,73,...,7px_1. For any nonzero a in
F, multiply these all by a to get ary,ars,ars,...,arpe_;. We know that
no two elements in this list are equal since if ar; = ar; we could cancel a
to get r; = r;. So ari,...,ar,k_; must be all the nonzero elements again.
Therefore their product is same as the product P of all the nonzero elements.
So P = (ary)...(arpe_1) = a g ok = a?*~1P. Canceling P (which
is nonzero) we get a?*~! = 1.

(b) For any nonzero element a, take the result of part (a) and multiply
through by a. On the other hand, if @ = 0 then ' =a anyway.

(c) Notice that ¢ here is not the Euler ¢-function! Rather, ¢(a) means a?.

So ¢(d(a)) = (a?)? = a?’, qb(zb(gb(a))) = ((a?)?)? = o*’, and so on, until
(... (p(a))...) (k times) is a?", which by part (b) we know is a again.

0-3: (i) says (ab)? = aPb?, which is true (by commutativity and associativ-

ity).

(ii) ¢(a + b) = ¢(a) + #(b) sounds strange. But notice that (a + b)P =
o (?)a’t?=* and we also know that since p is prime, each binomial co-

efficient except the O-th and last is divisible by p and so is 0 in a field of
characteristic p. Therefore (a + b)? = a? + bP as required.

(iii) By O-2 we know that ¢(¢(...(¢(a))...)) = a for all a. If ¢(a) = ¢(b),
then applying ¢ to both sides p — 1 more times we get a = b, so ¢ can’t take
different elements to the same element, i.e., ¢ is one-to-one. Also to show
that ¢ is “onto”, either remark that a one-to-one function on a finite set must
be onto, or else notice that ¢(a) = b has the solution a = ¢(H(. .. (¢(b))...))
(with p — 1 applications of ¢).

O-4: In this kind of problem, start by making yourself some simple examples.
For example, if a has order 12, then a® has order 4, because (a®)* = 1 and
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yet no smaller power of ¢ is 1. To emphasize the 4, we can say a¢'%/* has
order 4. Now you’re ready to try the official version.
(a) Taking powers of a’/", we have 1,a’/™ ,a®/™ ..., returning to 1 only for

7 / .
a”"/™  so the order of a’/" is .

(b) Here an example would be lem(12,15) = 60 and 4 - 15 = 60. Another
choice would be 12 -5 = 60.

For an official version, as suggested write

€1 ,.€2

r=Dp1 Dy pZ’“

s=pl'pl...pft .

C=pi'py ... plF
Here g; = max(e;, f;) for each i. We are supposed to make ¢ out of coprime
divisors 7’ of r and s’ of s. So let’s go through the primes one by one, throwing
a power of it into 7’ or s’ but not both: If e; > f;, put p{* into r'. If e; < f;,
put p;* into s'. If e; = f; we have a choice but let’s say put p;" into r’. Then
each prime-power factor of £ is in exactly one of 7' and s’, which gives £ = r's’
and also 7', s’ are coprime.

(c) If a has order r and b has order s, let £ = lem(r, s). By (b) we can find
coprime 7', s' with '|r, s'|s. Let a/ = a’/" and let o’ = b*/*". By (a) we know
a’ has order 7" and &' has order s’. And since 7', s’ are coprime, by N-3 we
know a'b’ has order r's’, which is £. So we do have an element whose order
is the lem of the orders of a and b.

(d) If r is the maximum possible order of a unit, and s is the order of some
other unit, then by (c) there is an element of order lem(r, s). This is at least
as large as r but can’t be larger, since r was already the largest possible
order. Then lem(r, s) = r, which is a fancy way of saying that s|r.

O-5: As suggested, let 7 be the maximum possible order of a unit (nonzero
element). Then by O-4(d), if a is any unit, the order of a divides r, so that
a” = 1. Now we use a fact about fields: A polynomial of degree n has at
most n roots. Where is the polynomial? a" = 1 says that a is a root of " —1.
So every nonzero element of F' is a root of 2" — 1. If the field has ¢ = p*
elements, then " — 1 has ¢ — 1 roots and so r > ¢ — 1. Also r, being the
order of an element, can’t be larger then ¢ — 1, so r = ¢ — 1. Therefore there
is an element of order ¢ — 1, or in other words, a generator (since it has ¢ —1
different powers)..

P-1: These are just to get an intuitive feel for the complex numbers and
complex series. These demos will not be covered on the final exam.

(a) The straight line segments represent the terms 1, z, 22, 23, ... that are to

be added together to make a geometric series. When |z| > 1, the absolute
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value of these powers is always 1 or more, so there is no convergence. On the
other hand, you can see from experimenting that for |z| < 1 the geometric

series does converge. (The sum is lsz for any z, the same formula as for
real z.)

(b) The sum goes around the circle, because you are computing ¥ for various
numbers ¢6 on the imaginary axis.

Note: This demo also shows a couple of interesting things even for real z.
Compare, say, e'? and e '* as computed by series:
e = 14104 3510° 4+ 10° + ...

e = 1-10+ 310> — 10 + ...

The first interesting thing is that the terms get large in absolute value before
starting to get small and tending towards 0. For example, the term with
exponent 10 is ;10" &~ 2755.73. Of course, it makes sense to have some
large terms since e'? is also large, ~ 22026.5.

The second interesting thing, though, is that these same terms with alter-
nating signs add up to e~1°, which is extremely small, ~ 0.000045. So they
come very close to canceling each other out.

To see this happening in the demo, move the pointer to the the left end of
the real axis (which is about —3). The yellow dot shows that the sum is just
about 0. Now move the pointer upwards a bit so you can see some terms
separately; they make zigzag lines indicating lots of big terms adding up to
about 0, but not quite.

(c) The “spotlight” shows part of a grid in the domain and its corresponding
image. The polynomial function you are seeing is f(z) = z? + 1. The two
dots on the imaginary axis are the roots, which are +i.

The reason for showing a spotlighted portion of the grid in the domain instead
of the whole grid is simply that the whole grid gives too confusing an image.

For the related function 22, if you walk around a circle in the domain then
the image goes around a circle twice. With f(z) = 2% +1 (which is 2? moved
right by 1) the same is true; try dragging the spotlight around a circle in the
domain, with the two roots inside.

The problem mentions “analytic” functions; that means differentiable. Com-
plex analytic functions have the property that they are “conformal”, meaning
angle-preserving, wherever the derivative is not zero. For f(z) = 22 + 1, the
derivative is 2z, so it’s conformal except at the origin.

This demo is actually more elaborate; you can make different polynomials by
dragging the roots around and you can even change the degree by dragging
an additional root from the “root box” in the upper left corner.
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P-2: The first part is just like N-2 but for any field F, with ¢ = p*, instead
of just for F,. But the reasoning is exactly the same; there are ¢* — 1 nonzero
Vgctors and ¢ — 1 nonzero vectors per 1-dimensional subspace, so there are
%_7_11 = ¢ + ¢ + 1 one-dimensional subspaces.

How about 2-dimensional subspaces? We can use “overcounting” by counting
their bases. (These are “ordered” bases, where vy, v, is considered different
from vy, v1.) To make a single 2-dimensional subspace, we need a basis of two
vectors. The first is simply nonzero, so we have ¢> — 1 choices. The second
is any vector not containing the span of the first; the span is 1-dimensional
and so has ¢ vectors (the number of scalars), so the number of choices for the
second is ¢*—¢. The number of bases of two vectors is therefore (¢*—1)(¢*—2).
Within a single 2-dimensional subspace, how many bases are there? A 2-
dimensional subspace has ¢? elements, so in choosing a basis within it we have
g*> — 1 choices for the first vector and ¢? — ¢ choices for the second, making
(¢ — 1)(¢* — q) choices in all. Using the “overcounting” method, then, we
(@ -1 ~q) _ (@=1)(@"+q+1)a(g+1)(g—1)

(@ - D" —a) (¢+1)(g—Dglg—1)
same as the number of 1-dimensional subspaces.

get = ¢’ +q+1, the

How many 1-dimensional subspaces are there within each 2-dimensional sub-
space? A 2-dimensional subspace has ¢?> — 1 nonzero vectors, and each 1-

2
({]__11 =g+ 1 one-

dimensional subspaces contained in each 2-dimensional subspace.

dimensional subspace uses ¢ — 1 of them, so there are

How many 2-dimensional subspaces are there containing a given 1-dimensional
subspace? Let v; be a basis for the 1-dimensional subspace (i.e., any nonzero
vector in the subspace). Let vy be any vector not in the 1-dimensional sub-
space; then vy, v, are linearly independent and their span is a 2-dimensional
subspace. There are g3 —q choices for v,, but how many of these give the same
2-dimensional subspace? Notice that vy, v} give the same subspace as vy, v,
when v, is in the span of vy, vy but is not in the span of v;. In other words,
vy = 1101 +7909 With 79 # 0. There are ¢ choices for 1 and g—1 choices for rs,
so g(g — 1) choices in all. Then the number of 1-dimensional subspaces con-

.. ) ) ) ) 3_ 1)(g—1)
taining a given 1-dimensional subspace is —Z - (g +1)(g =qg-+1.
gaeg P q(g—1) q(qg—1) 1

Conclusion: There are ¢2 + ¢ + 1 plants, ¢ + ¢ + 1 blocks, ¢ + 1 plants per
block and ¢ + 1 blocks per plant.

Notice that this checks with the case ¢ = 2, where these numbers come out
to be 7 and 3.

Note: N-2 might be on the final but P-2 won’t be.

P-3: (Not on final) You have seen a description of Fg mentioning that it has a
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generator a with o® = a+1, so « is a root of 28+ +1. (As usual, signs don’t
matter with characteristic 2.) And this polynomial is indeed irreducible since
a reducible polynomial of degree 3 would have a linear factor and so would
have a root in Fy, but this one does not (since 0 and 1 are not roots). So use
“boxes modulo z* + z + 1”7 (or more officially, congruence classes). Just as
boxes mod 7 correspond to the possible remainders on dividing by 7 (namely
0 through 6), the boxes for polynomials correspond to the possible remainders
on dividing by 2® +z + 1, which is anything of lower degree. So the boxes can
be described as containing respectively 0,1, z,x + 1,22, 2% + 1, 2% + z, 2% + 2!
(eight boxes). Of these, « is the box of z. You can see that « is a root of
23 4+ 2 + 1 since all multiples of that polynomial, including the polynomial
itself, are in box 0.
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