Math 117 S04 SOLNS4.

Solutions to Assignment #4

p- 84, E1: In Z/147Z, omitting brackets we get 12 + 8 = 6, 6 + 5= 11, 10
+5=1,12-8=(-2)-(-6)=12,6-5=2,10-5=38.

p. 84, E3:

+ 0 1t 2 3 4 x 0 1 2 3 4
01 0 1 2 3 4 01 0 0 0 0 0
11 1 2 3 4 o0 11 0 1 2 3 4
2] 2 3 4 0 1 2] 0 2 4 1 3
31 3 4 0 1t 2 3] 0 3 1t 4 2
41 4 0 1t 2 3 41 0 4 3 2 1

p. 86, E3: InZ/13Z,{0,1,2,22,...,2'?} = {0,1,2,4,8,3,6,12,11,9,5,10, 7},
which is a complete set of representatives. Notice that after you hit 12 = —1
in the middle, the last half will be the negatives of the first half.

(In such problems, the text lists the primitive element and then its powers,
ending with 1. I think it’s more meaningful to list the 0-th power first, so
1,2,4,...)

p- 86, E4: We usually try 2 first ; if that doesn’t work, then 3; if that
doesn’t work then 5 (skipping 4 since it has been seen as a power of 2), etc.

(i) For m = 5, 2 is primitive since its powers are 1,2, 4, 3.

(i) For m = 7, 2 is not primitive since 2° = 1, but 3 is primitive since its
powers are 1,3,2,6,4,5.

(iii) For m = 11, 2 is primitive since its powers are 1,2,4,8,5,10,9,7, 3, 6.

p.- 89, E4: In Z/147Z we have units 1,3,5,9,11,13, related by 1 -1 = 1,
3.5=1,9-11=1,13-13 = 1.

p- 90, E8: I think it’s best to do these problems by replacing any integers by
easier residues, converting to an equation, dividing by the gcd of all integers
in sight, and going from there.

Remember, these are all in Z/12Z, so [a] = [4] when 4 — a is a multiple of
12, i.e., 4 — a = 12y for some y, which is the same as a + 12y = 4 for some y.

SOLNS4 1



Also, remember that for an equation ar 4+ bs = ¢, any particular solution r, s
gives more solutions by replacing r by r + kb and s by s — ka, for each k. If
a and b are coprime then this gives all solutions.

(i) Solving [4]x = [18] = [6] is equivalent to solving 42+ 12y = 6 or 2z + 6y =
3, which is impossible, so there are no solutions.

(ii) Solving [9]z = [48] = [0] is equivalent to solving 9x+12y = 0 or 3z +4y =
0. One solution is x = 0,y = 0; all solutions are x = 0 + 4k, y = 0 + —3k
for each k. So in the original problem, z = [4k] for each k. This expression
takes on only three different values: = = [0], [4], [8].

(iii) Solving [10]z = [100] is the same as [—2|z = [4], which is equivalent to
solving —2x + 12y = 4 or x — 6y = —2. One solution is x = —2,y = 0. All
solutions are © = —2 4 6k,y = —k for each k. So solutions to the original

problem are x = —2 + 6k as k varies. There are only two distinct values,
x = [4],[10] (where [10] = [-2]).

p- 90, E9: Following the same ideas as in the preceding solution, but for
Z/30Z:

(i) [4]z = [18] is the same as 4z + 30y = 18 or 2z + 15y = 9. Instead of using
the Euclidean algorithm, notice that 2-8+15-(—1) = 1s02-72+15-(—=9) =9
and the general solution is x = 72 4+ 15k, y = —9 — 2k. The least positive
residues for = occur when £ = —3, —4 and we get = = [12], [27].

(ii) [9]x = [48] = [18] is the same as 9z + 30y = 18 or 3z + 10y = 6. One
solution is x = 2,y = 0, the general solution is x = 2 4+ 10k,y = 0 — 3k, and
the least-residue solutions to the original problem are z = [2],[12], [22].

(iii) [10]z = [100] = [10] is the same as 10z + 30y = 10 or 2+ 3y = 1. One so-
lution is x = 1,y = 0, the general solution is x = 1+3k,y = —k, and the least
positive residues for x are x = [1], [4], [7], [10], [13], [16], [19], [22], [25], [28].

(iv) [12]z = 8 is the same as 12z + 30y = 8 or 6z + 15y = 4, which has no
solution since the Lh.s. is divisible by 3 and the r.h.s. is not.

(v) [6]x = 2 is the same as 62 + 30y = 2 or 3z + 15y = 1, which has no
solution since the l.h.s. is divisible by 3 and the r.h.s. is not.

E-1: The exponent is written in binary as a reminder that one good method
is repeated squaring following by putting together the pieces of the exponent:
The exponent is 16 + 4 + 2.

(a)32=9,3"=92=1 (mod 16),503% =1 (mod 16) and 3! =1 (mod 16);
we get 316442 =1.1.9=9 (mod 16).

(b) 32 =9, 3* = 92 = —4 (mod 17), 3% = (=4)? = -1 (mod 17), 3¢ =
(-1)> =1 (mod 17), so 342 =1.(—-4)-9=-36 = —2 = 15 (mod 17).
(As a shortcut, notice that 3'® has to be =1 (mod 17) by Little Fermat.)
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E-2: First, notice that every odd integer is of the form 4n + 1 or 4n — 1, so
is =1 (mod 4) or = —1 (mod 4).

(a) How about a sum of two squares, a® + b?? Modulo 4, the only squares
are 0 and 1, so a® + b? must be = to one of 0, 1, or 1 +1 =2 (mod 4), never
3 (= —1). For p = a® + b?, either p is even, so p =2 =12+ 1% or else p is
odd, so is =1 (mod 4), i.e., p = 4n + 1 for some n.

(b) 29 = 22 +5%; 61 = 52 + 62; 97 = 42 + 92,

E-3: (a) Because v/2 is a root of 22 — 2 and is not an integer. In general,
\/n is a oot of 2 — n and so is either an integer or irrational.

Note: How to justify that v/2 is not an integer? Either point out that /1 =1
and v/4 = 2 and so v/2 is between 1 and 2, or mention that 2 is prime while
a perfect square would have a prime factorization in which each prime has
an even exponent.

(b) As suggested: Suppose % is in lowest terms (i.e., that a, b are coprime—
and to allow the fraction to be negative, let’s assume that b > 0 while a can
be positive or negative) and also is a root of 2" + ¢, 12" ' + -+ + 17 + ¢
with integer coefficients. We want to show that b = 1 so % will be an integer.
Start from the equation

(%)n+cn_1 (%)nl +---+c1% +co = 0.

Multiply through by 4™ and solve for a™; we get
a" = —cp_10" h—- - —crab"t —cob™ = —b(c,_1a" 4+ - 4crab™ 2 +cob™ ).

Thus any prime divisor of b also divides a™ and hence a. This would contra-
dict the fact that a and b are coprime, unless b = 1. Therefore b = 1 and so

% is an integer. [

The point of the theorem is that a number that is a root of a polynomial like
this is never a fraction that is not an integer, e.g., g.

(c) We can apply the theorem by finding a polynomial of which the given
number is a root. Write r = v/v/5+ 1 and square, getting > = /5 + 1.
Squaring again doesn’t get rid of the square root on the right; instead, move
the “1” to the left side and square: 72 —1 = /5, (r?—1)? = 5. Now move the
5 to the left side and simplify: r* —2r?2 —4 = 0. So r is a root of z* — 22? — 4,
which is a polynomial with integer coefficients and leading coefficient 1. The
theorem says that r is either irrational or an integer. One way to see that
it is not an integer is to point out that v/v/0 + 1 = 1 and is smaller than r,
while vVv/9+ 1 =2 and is larger than 7.
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E-4: (a) b"—1= (b—1)(1+b+b*+---+b""1), s0 b can’t be prime unless one
of the factors is 1, which means either that b = 2 or that 1 +b+...0" 1 =1,
which doesn’t happen for b > 0 and n > 1.

(b) If n = rs with r,s > 1 then 2" —1 = 2" — 1 = (2")®* — 1, which is not
prime by (a) with b = 2".

(c) Experimentation gives My; = 23 - 89, which is not prime.

E-5: (a) If bis odd and n > 1 then b" is odd and so b™ + 1 is even. The only
even prime is 2, which happens only if b = 1. [The problem should have said
that b > 1.]

(b) As suggested, for n odd we have " +1= (b+1)(1 —b+b*> —---+b"71).
For b,n > 1, at least b+ 1 > 1. We need to show that the other factor is not
1: If it were then " +1 = (b+1)-1, i.e., b = b, s0 b" ! =1, so b = 1, which
we're excluding. Therefore the second original factor is > 1 and 0" + 1 is not
prime.

(c) If n = rs with s odd, then 8" + 1 =" + 1 = (b")® + 1, which fits part
(b) with " in place of b, so b™ + 1 is not prime.

Then as the problem says, n is a power of 2, so we are considering numbers
of the form % + 1. The most popular value of b to use is 2, although other

values will give primes some of the time also; e.g., 62 + 1 = 37, which is
prime.

(d) For Fj, = 2% + 1, we have F; = 641 - 6700417.
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