Math 117 S04 SOLNS3.

Solutions to Assignment #3

p- 49, E2: Notice that this is a generalization of Lemma 2, which says that
if a prime p divides a product of two factors then it must divide at least one
of them.

Let P(n) be the assertion that if a prime p divides a product of n factors, i.e.,
plaias . .. ay, then p divides (at least) one of the factors a;. (Thus Lemma 2
is the case P(2).)

The problem doesn’t say what starting n to use, but since P(1) is true, let’s
start there!.

Proof by induction on n: P(1) says that if pla; then p|a;, which is trivially
true.

Now assume that P(k) is true (the “inductive hypothesis”) and consider
P(k +1). If pla;...axag+1, we can view this as as p|(ay...ag)ags1. By
Lemma 2, p divides at least one of (a;...ax) and agyq. If plag,;, we are
done. If not, then pla; ...ax, and by the inductive hypothesis p divides at
least one of ay, ..., ax, so again we are done and P(k + 1) has been verified.

Therefore P(n) is true for all n > 1 by mathematical induction. O
(A box like this is often used to mark the end of a proof.)

Notice that this kind of induction, where the case n = 2 is used to prove an
assertion for general n, is very easy, even though it took a bit of writing to
say it. So in this course and in more advanced mathematics courses, we’ll
often just say, “By Lemma 2 and induction, pl|a; ...a, implies p|a; for some
17 and not give details. You may do the same, except when the proof is
specifically requested.

To invent the inductive proof, if you don’t see it right off then try showing
specific cases for practice, such as P(2) = P(3) and P(3) = P(4). Then
adapt your reasoning to the full inductive step with n in place of any specific
integer.

p- 50, E3: Since n is not prime, we have n = ab, where a and b are both
integers > 1. If both
a > +/n and

b>+/n

! Actually P(0) is technically true also. Since an “empty product” has value 1, P(0) says
that if p|1 then p divides some a;. Obviously p|1 can’t be true, but this is OK: In logic,
starting from a false premise you can prove anything, including another false statement
such as that p divides some a; when there aren’t any. Let’s not be concerned with this.
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then multiplying we get ab > \/ny/n, or in other words, n > n, which is a
contradiction. Therefore one of a and b must be < y/n, say a < y/n. Let p
be a prime factor of a; then p < a < /n and also p is a prime factor of n, as
required.

p- 52, E7: Let a = 27324%5%65 = 273%(22)%5%(2 - 3)% = 2223755 and similarly
let b = 235435367 = - - - = 21731253, Then gcd(a, b) = 2173753, by taking the
minimum exponent of each prime involved.

Notes: (1) It’s OK to leave the answer in factored form unless the problem
says to give an explicit integer as the answer. (2) It might be tempting to
write the answer in the form 273745767 again but there is more than one way
to do this—not surprisingly, since we wouldn’t be using a factorization into
primes.

p- 52, E13: Notice the intuitive idea of this problem: a and m have some
prime factors in common giving ged(a, b) = d, while b and m, being coprime,
have no prime factors in common, so ab and m have the same prime factors
in common as a and m, still giving d as their ged.

To say this in detail requires inventing some notation. Since the issue is
primes involved in m versus primes not involved in m, let py,...,pr be the
distinct prime factors of m and let pyy1, .., p, be whatever additional distinct
primes are involved in a and b. Since m and b are coprime, all the prime
factors of b are in this second group. Let d' = ged(ab, m). Then we can write
“parallel” prime factorizations for all the relevant quantities, with suitable
exponents; I'll put first the factorizations and then just a table of exponents
for clarity. See just below for explanations of the letters.
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Here for i < k we have h; = min(e;, f;) = h} and for ¢ > k the exponent of p;
is 0 for both d and d', since 0 = min(0, f;) = min(0, f; + ¢;). O

(It may be that there is also a solution using Bezout instead of prime factor-
izations, but I don’t see it.)

p- 55, E1: In advance, notice that any odd number is of either the form
4n + 1 or the form 4n — 1, for some n, i.e., is congruent to 1 or 3 (mod 4).

Following the idea of Euclid’s proof, suppose that there are only finitely many
primes of the form 4n—1, say py, ..., p.. Assuggested, let a = 4pips...p,—1.
For each 14, since p;|a + 1, p; does not divide a. Therefore a is a product? of
primes not among the p;. Since a is odd, the prime 2 is not one of its factors,
so its factors must all be of the form 4n + 1 for various values of n. Why is
this bad? Think modulo 4: A product of factors each =1 (mod 4) must be
=1 (mod 4), while a = —1 (mod 4), so we have a contradiction. Therefore
there must be infinitely many primes of the form 4n — 1.

p- 65, E3: This is just asking for remainders after dividing by the modulus.
Therefore the answers are 0, 6, 31, 6. (For modulus 9, you now know how
to use the fact that positive integer is congruent (mod 9) to the sum of its
digits.)

p- 65, E5: (i) 13|1950, so the numbers are 1951, 1964, 1977, 1990.

(ii) 40/200, so add 200 to 1776; there isn’t room for more between 1950 and
2000, so the only answer number is 1976.

(iii) 1959, 1974, 1989.

p- 67, E5: Use induction. The statement is trivially true for n = 0. If we
know that 6-4" = 6 (mod 9), multiply both sides by 6 to get 6-4""! =4-6 =
24 =6 (mod 9), which verifies the case of n + 1 in place of n. Therefore the
statement is true for all n by induction. [

(This way of phrasing induction was a little less formal than an answer above
that defined P(n) and then talked about P(k) and P(k+ 1), but it’s the same
method.)

p. 67, E6: (i) Solution #1: Starting from 5 = 5 (mod 7), keep squaring
and simplifying to get the residue of 5 to each power-of-2 power: 52 =25 = 4
(mod 7),5*=16=2 (mod 7), 53 =4 (mod 7), 5! =16 =2 (mod 7). The
exponent 18 = 16 + 2, so we multiply the two relevant congruences, getting

2Here a itself could be prime, in which case the “product” would have just one factor.
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58 =52.56=4-2=8=1 (mod 7). (Notice that writing 18 as 16 + 2 is
really the same as expressing 18 in binary.)

Solution #2: The same as #1, except replace 5 by -2 everywhere, which
makes the arithmetic easier.

Solution #3: Since 7 is prime, by Fermat’s Little Theorem we have 5% = 1
(mod 7). Now cube both sides to get 5'® =1 (mod 7). (This is the easiest
method, but it comes after this section in the text. No doubt the author
made the problem up this way.)

(ii) Solution #1 in outline: 68 = 3 (mod 13), so 68'% = 3!% (mod 13). Also
by thinking of 105 in binary we have 105 = 64 + 32 + 8 4+ 1, so we can use
successive squaring and then put some powers together to make 3!%°. So we
find 32 =9 = —4 (mod 1)3,3* = (—4)2 =16 =3 (mod 13), 3¥* =32 =9
(mod 13), etc.

Solution #2: As in #1, replace 68 by 3. By Little Fermat, 3'> =1 (mod 13),
so we also get residue 1 for any power that is a multiple of 12, since 3'% =
1¥ = 1. Also 105 = 8-12+9. Therefore 3'% = 3° (mod 13). Also 9 =8 +1,
so using powers found in Solution #1, we have 3° =3%.3=9-3=27=1
(mod 13). To summarize:

68105 = 3105 — 381249 — (312)839 = 39 = 1 (mod 13).

Solution #3: In the previous solution, notice that 3> =27 =1 (mod 13). So
3 to any power that is a multiple of 3 is = 1 (mod 13). Notice that 105 is a
multiple of 3, so 68'%° = 3105 = 3335 = (3%)3% = 135 = 1 (mod 13). (Probably
this is how the author made up the problem—He started by thinking about
13 for the modulus and noticed that 27 works nicely.)

(iii) Notice that 6 and 12 have the same prime factors, so some power of 6 is
going to have high enough exponents to be divisible by 12—in fact, 6° and
higher powers are divisible by 12, so 6*" =0 (mod 12).

p- 74, E5: Running Euclid’s algorithm on 313 and 453, we get successive
numbers 453, 313, 140, 33, 8, 1 (and 0). Making linear equations in tabular
form, starting with ones that are obvious and subtracting the appropriate
multiple of each equation from the preceding, we get the following (in which
the quotients 1, 2, 4, 4 don’t show but are used):

453 = 1-453 + 0-313
313 = 0-453 + 1-313
140 = 1-453 + -—1-313
33 = —2-453 + 3-313
8 = 9-453 + -—-13-313

1 = —-38-453 + 55-313
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This checks arithmetically. So 313z = 1 for x = 55.

Actually, we could write all this with congruences mod 453 and so omit the
“453” column, but let’s not.

p. 74, E6: Running Euclid’s algorithm on 215 and 7, we get successive
numbers 215, 7, 5, 2, 1 (and 0). As in the preceding problem, we get

215 = 1-215 + 0-7
7 = 0-215 + 1-7
5 = 1-215 + -30-7
2 = —-1-215 + 31-7
1 = 3-215 + —-92-7

So 7z =1 (mod 215) for z = —92 = 123 (mod 215).

Multiplying through by 13 we get 7z = 13 (mod 215) for x = 13 - 123 =
1599 = 94 (mod 215).

D-1: (a) The dots in row p (counting from 0), except at the ends.

(b) Because each dot is the sum of the two just above it and because con-
gruences are compatible with addition, working (mod p) wherever we have
two 0’s (red dots) beside each other the one just below is also 0 (red). So as
we go down we can fill in a red triangle. In a row such as row p where the
residues (mod p) are 1,0, ..., 0, 1, the next row will have some consecutive
entries 1+ 0 (white), then red for a while, and then 0+ 1 (white again). The
same is true for each successive row, but the number of 0’s in the middle
decreases by 1 each time so we get a red triangle bordered by white.

(c) Evidently, if p is prime then p| (kzp) except possibly when p|k.

(d) Evidently for each power p* there is a red triangle starting in that row and
going all the way across that row except for the ends, so p| (p:) for 0 < i < p*.

D-2: [with the correction that the first paragraph gives 7(108), not 7(107)]

(a) w(100) = 25, just by counting the asterisks in the first line of the first
block in the prime-occurrence handout.

(b) The block of 1000 starting with 10% has 75 primes, while the density
prediction gives 1000/ log(108) = 1000/(61log(10)) ~ 72.38, so there are a
few more primes than predicted.

The block starting at 101 has two primes, while the density prediction gives
1000/ 1og(10'%%) = 1000/(1001og(10)) = 4.34, so there are not quite as many
primes as predicted.
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(c) [for 108] 7(10%) = 5761455 (according to the first paragraph of the prob-
lem as corrected), while (10%)/1og(108) = (10%)/(810og(10)) ~ 5428681. So
for n = 108, the ratio of m(n) to n/logn is 5761455/5428681 =~ 1.0613, off
by about 6%.

(d) From the figures given,
|7(10%) — Li(10'%)| ~ |279238341033925 — 279238344248557| = 3214632,

which does have about half as many digits as 10'® (or fewer).

Notes: (1) “Half as many digits” really refers to the square root of n. (2)
While the error looks large, with seven digits, it is less than one part in a
hundred million compared to n, which is pretty accurate! (3) The idea of
integrating a density to get a total amount may be familiar from density
problems in calculus.
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