Contents

1 Homework C1 3
2 Homework C2 5
HOMEWORK C1

Problem 1. For \(n \in \mathbb{N} \), we define the kernel \(K_n : \mathbb{R} \to [0, \infty) \) by setting \(K_n(x) = c_n(1 - x^2)^n \) for \(|x| \leq 1 \) and \(K_n(x) = 0 \) for \(|x| > 1 \). Here \(c_n > 0 \) is chosen so that \(\int K_n(x) \, dx = 1 \).

(a) Show that for each \(\delta > 0 \), we have \(K_n \to 0 \) as \(n \to \infty \) uniformly on \(\mathbb{R} \setminus (-\delta, \delta) \).

(b) Suppose that \(f \in C_c(\mathbb{R}) \) and \(\text{supp} f \subset [0, 1] \). Define \(P_n(x) = (K_n * f)(x) = \int K_n(x-u)f(u) \, du \) for \(x \in \mathbb{R} \). Show that for \(x \in [0, 1] \), the expression \(P_n(x) \) is equal to a polynomial in \(x \).

(c) Show that we have uniform convergence \(P_n \to f \) as \(n \to \infty \) on each compact set \(M \subset (0, 1) \).

(d) Use the previous considerations to prove Weierstrass’s approximation theorem: If \([a,b] \subset \mathbb{R} \) is a compact interval, then the set of polynomials is dense in \(C([a,b]) \).

Hint: First prove this for \([a,b] \subset (0, 1) \).

Problem 2. Let \(n \geq 2 \) and \(p \in (1, n) \). For a function \(f \in L^p(\mathbb{R}^n) \), we consider the Riesz potential

\[
I(f)(x) = \int_{\mathbb{R}^n} \frac{|f(y)|}{|x-y|^{n-1}} \, dy, \quad x \in \mathbb{R}^n,
\]

where \(dy \) indicates integration with respect to Lebesgue measure.

(a) Fix \(x \in \mathbb{R}^n \) and suppose that for some \(R > 0 \), we have \(f = 0 \) on \(\mathbb{R}^n \setminus B(x, R) \). Show that then \(I(f)(x) \leq C_1 R \cdot Mf(x) \), where \(C_1 = C_1(n) > 0 \) and \(Mf \) denotes the (uncentered) Hardy-Littlewood maximal function of \(f \).

Hint: Decompose \(B(x, R) \) into dyadic annuli.

(b) Fix \(x \in \mathbb{R}^n \). Suppose that for some \(R > 0 \), we have \(f = 0 \) on \(B(x, R) \). Show that then \(I(f)(x) \leq C_2 R^{1-n/p} \|f\|_p \), where \(C_2 = C_2(p, n) > 0 \).

(c) Show that \(\|I(f)\|_{p^*} \leq C_3 \|f\|_p \), where \(p^* = np/(n-p) \) and \(C_3 = C_3(p, n) > 0 \).

Hint: Split the given function \(f \) into two functions as suggested by (a) and (b). Optimize \(R \) to find a good pointwise estimate for \(I(f)(x) \).

Problem 3. Let \(X \) be a complex Hilbert space.

(a) Show that every orthonormal set \(A \subset X \) is contained in a maximal orthonormal set \(B \subset X \).

(b) Show that if \((x_n) \) is an orthonormal set in \(X \), then \(x_n \to 0 \) in the weak topology on \(X \).

Hint: This follows from the more general condition in Problem 4, but derive this from Bessel’s inequality.

(c) Show that if \(X \) is separable and infinite-dimensional, then each maximal orthonormal set \(A \subset X \) is countably infinite.

Hint: Use the existence of a countably infinite maximal orthonormal set (Hilbert space basis) as discussed in class.
(d) Show that if X is separable and infinite-dimensional, then there exists a linear isomorphism $T : X \rightarrow l^2$ that preserves the inner product.

Problem 4. Let X be a complex separable Hilbert space with a Hilbert space basis (x_n).

(a) Show that the infinite series $\sum_{n} \alpha_n x_n$ with coefficients $\alpha_n \in \mathbb{C}$ converges in X if and only if $\sum_n |\alpha_n|^2 < \infty$.

(b) Show that for a sequence (y_n) in X, we have $y_n \to y \in X$ in the weak topology on X if and only if

 (i) there exists a constant C such that $\|y_n\| \leq C$ for all n;

 (ii) $\langle y_n, x_k \rangle \to \langle y, x_k \rangle$ as $n \to \infty$ for each k.

(c) Let (y_n) be a sequence in X. Show that then there exists $y \in X$ such that $y_n \overset{w}{\to} y$ if and only if

 (i) there exists a constant C such that $\|y_n\| \leq C$ for all n;

 (ii) the sequence $(\langle y_n, x \rangle)$ converges for each $x \in X$.

HOMEWORK C2

Problem 1. Let X be a (complex) Hilbert space.

(a) Show that if Y is another Hilbert space and $T : X \to Y$ is a bounded linear operator, then there exists a bounded linear operator $T^* : Y \to X$ (the adjoint of T) such that

$$\langle T(x), y \rangle = \langle x, T^* y \rangle$$

for all $x \in X$ and $y \in Y$.

*Hint: For fixed $y \in Y$, consider the map $x \mapsto \langle T(x), y \rangle$."

(b) Let M be a closed subspace of X. Each $x \in X$ can be uniquely represented in the form $x = y + z$ with $y \in M$ and $z \in M^\perp$. Show that $x \mapsto y$ defines a bounded linear operator $P : X \to X$ (the orthogonal projection of X to M) satisfying $P^2 = P$ and $P^* = P$. What is the operator norm $\|P\|$?

(c) Let $P : X \to X$ be a bounded linear operator with $P^2 = P$ and $P^* = P$. Show that then there exists a closed linear subspace M of X such that P is the orthogonal projection of X to M.

(d) Let P_N denote the space of trigonometric polynomials of degree at most N, i.e. the set of all functions of the form

$$f = \sum_{n=-N}^{N} c_n u_n,$$

where $u_n(t) = e^{int}$ and $c_n \in \mathbb{C}$.

Show that P_N is a closed linear subspace of $L^2(\mathbb{T})$ and that $s_N : L^2(\mathbb{T}) \to L^2(\mathbb{T})$ defined as

$$s_N(f) = \sum_{n=-N}^{N} \hat{f}(n) u_n$$

for $f \in L^2(\mathbb{T})$ is the orthogonal projection of $L^2(\mathbb{T})$ to P_N.

Problem 2. (a) Let $(c_n)_{n \in \mathbb{Z}}$ be a sequence of complex numbers with $\sum_n |c_n| < \infty$. Show that then $f(t) = \sum_n c_n e^{int}$ converges uniformly for $t \in \mathbb{R}$ and represents a 2π-periodic continuous function f on \mathbb{R} with $\hat{f}(n) = c_n$.

(b) Suppose $f : \mathbb{R} \to \mathbb{C}$ is a 2π-periodic function in $C^1(\mathbb{R})$. Show that then $\hat{f}(n) = O(1/n)$ as $|n| \to \infty$.

(c) Show that a 2π-periodic function $f : \mathbb{R} \to \mathbb{C}$ is C^∞-smooth if and only if for all k, we have $f^{(k)}(n) = O(1/|n|^k)$.

*Hint: For one of the directions, show that under suitable assumptions, the series in part (a) can be differentiated term-by-term."
Problem 3. Show that there are functions \(f \in C(\mathbb{T}) \) such that for the \(N \)-th partial sum \(s_N(f) \) of its Fourier series, we have \(s_N(f)(0) \not\to f(0) \) as \(N \to \infty \).

Hint: Argue by contradiction. Consider the operators \(\Lambda_N : C(\mathbb{T}) \to \mathbb{C} \) given by \(\Lambda_N(f) = s_N(f)(0) \). Show that for their operator norms, we have \(\|\Lambda_N\| \geq \|D_N\|_1 \), where \(D_N \) is the Dirichlet kernel.

Problem 4. Let \(\alpha \in \mathbb{R} \) be an irrational number.

(a) Suppose \(f : \mathbb{R} \to \mathbb{C} \) is a continuous function satisfying \(f(t + 1) = f(t) \) for \(t \in \mathbb{R} \). Show that then

\[
\frac{1}{N} \sum_{n=1}^{N} f(n\alpha) \xrightarrow{N \to \infty} \int_{0}^{1} f(t) \, dt.
\]

Hint: First show this for certain types of functions \(f \) for which the sum on the left hand side can be computed explicitly.

(b) For \(x \in \mathbb{R} \), let \(\text{frac}(x) \) denote the fractional part of \(x \). Prove Weyl’s equidistribution theorem: For each interval \([a, b] \subset [0, 1] \),

\[
\lim_{N \to \infty} \frac{\# \{ n \in \{1, \ldots, N\} \mid \text{frac}(n\alpha) \in [a, b] \} }{N} = b - a.
\]

(c) Show that \(\{ \text{frac}(n\alpha) \mid n \in \mathbb{N} \} \) is dense in \([0, 1]\).