Contents

1 Homework 1 3
2 Homework 2 5
3 Homework 3 7
4 Homework 4 9
HOMEWORK 1

Problem 1. Construct a smooth manifold structure on the Grassmannian $Gr_n(\mathbb{R}^k)$, the set of all n-dimensional subspaces of \mathbb{R}^k. Construct the canonical n-dimensional vector bundle over it (as a smooth vector bundle, not just the fiber over each point).

Problem 2. Let M be a compact n-dimensional manifold and $f : M \to \mathbb{R}^n$ be a smooth map. Prove that f is singular (that is, df has rank less than n) somewhere.

Problem 3. A Riemannian structure on a smooth manifold is a choice of a positive definite inner product $\langle \cdot, \cdot \rangle_p$ on each tangent space T_pM, which is smooth in the sense that whenever X and Y are two smooth vector bundles, $\langle X, Y \rangle$ is smooth. Prove that there is a Riemannian structure on every smooth manifold.

Hint: Use partitions of unity.

Problem 4. Prove that there are exactly two isomorphism classes of line bundles (one-dimensional vector bundles) over S^1. Which of them is the tangent bundle T^*S^1?

Problem 5. If $A \subset M$ is a closed submanifold and $U \supset A$ is any open neighborhood, and $f : A \to \mathbb{R}$ is a smooth function, prove that there is a smooth function $g : M \to \mathbb{R}$ with $g|_A = f$ and $g = 0$ outside U.

Problem 6. Consider the maximal atlas on \mathbb{R} containing the function $t \mapsto t^3$. Prove that it produces a smooth structure on \mathbb{R} distinct but diffeomorphic to the standard smooth structure on \mathbb{R}. (The standard smooth structure comes from the maximal atlas containing the function $t \mapsto t$.)
HOMEWORK 2

Problem 1. View S^2 as the unit sphere in \mathbb{R}^3.

(a) Let $p_0 \in S^2$ be the point $(0, 0, 1)$. If $SO(3)$ is the special orthogonal group, define $f : SO(3) \to S^2$ by $f(A) = A(p_0)$. Prove that this is a smooth fiber bundle with fiber $SO(2) \cong S^1$.

(b) The tangent bundle T^*S^2 carries a Riemannian metric coming from the dot product in \mathbb{R}^3. Let ST^*S^2 be its unit sphere bundle, which is a fiber bundle over S^2 whose fibers over each point are the length-one tangent vectors over that point. Construct a diffeomorphism between ST^*S^2 and $SO(3)$ as fiber bundles over S^2.

(c) Consider the Gauss map $S^2 \to Gr_2(\mathbb{R}^3) \cong \mathbb{RP}^2$. Prove that this is the orientation double cover.

Problem 2. Let $f : M \to N$, and suppose (x, U) and (y, V) are coordinate systems around p and $f(p)$, respectively.

(a) If $g : N \to \mathbb{R}$, then prove that

$$\frac{\partial (g \circ f)}{\partial x^i}(p) = \sum_j \frac{\partial g}{\partial y^j}(f(p)) \frac{\partial (y^j \circ f)}{\partial x^i}(p)$$

(b) Prove that

$$f_* \left(\frac{\partial}{\partial x^i} \bigg|_p \right) = \sum_j \frac{\partial (y^j \circ f)}{\partial x^i}(p) \frac{\partial}{\partial y^j} \bigg|_{f(p)},$$

and more generally, express $f_* \left(\sum_i a^i \frac{\partial}{\partial x^i} \bigg|_p \right)$ in terms of $\frac{\partial}{\partial y^j} \big|_{f(p)}$.

(c) Show that

$$(f^* dy^j)(p) = \sum_i \frac{\partial (y^j \circ f)}{\partial x^i}(p) dx^i(p).$$

(d) More generally, express

$$f^* \left(\sum_{j_1, \ldots, j_k} a_{j_1, \ldots, j_k} dy^{j_1} \otimes \cdots \otimes dy^{j_k} \right)$$

in terms of the dx^i.

Problem 3. (a) Construct isomorphisms $\phi_V : V \to V^{**}$ for all finite-dimensional vector spaces V so that for any linear map $f : V \to W$, the following commutes.

$$\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\phi_V & \downarrow & \downarrow \phi_W \\
V^{**} & \xrightarrow{f^{**}} & W^{**}
\end{array}$$
(b) Prove that there do not exist isomorphisms $\phi_V : V \to V^*$ for all finite-dimensional vector spaces V so that for any linear map $f : V \to W$, the following commutes.

\[
\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\downarrow{\phi_V} & & \downarrow{\phi_W} \\
V^* & \xleftarrow{f^*} & W^*
\end{array}
\]

(c) Construct isomorphisms $\phi_V : V \to V^*$ for all finite-dimensional inner product spaces V so that for any linear map $f : V \to W$ between inner product spaces that preserves inner products, the following commutes.

\[
\begin{array}{ccc}
V & \xrightarrow{f} & W \\
\downarrow{\phi_V} & & \downarrow{\phi_W} \\
V^* & \xleftarrow{f^*} & W^*
\end{array}
\]

Problem 4. Prove that the tangent bundle and the cotangent bundle of a manifold are always isomorphic (although not canonically).
HOMEWORK 3

Problem 1. Let M_n be the space of $n \times n$ real matrices and let M_n^k be the subspace of all matrices of rank k. Prove that M_n^k is a submanifold of M_n.

Hint: Fix some $k \times k$ minor and consider the subspace of M_n where this minor has non-zero determinant.

Problem 2. The n-dimensional torus T^n is defined to be $\mathbb{R}^n/\mathbb{Z}^n$, i.e. for any $x, y \in \mathbb{R}^n$, we say that $x \sim y$ if and only if $x - y \in \mathbb{Z}^n$. Let $\alpha, \beta : \mathbb{R}^n \to \mathbb{R}$ be two nowhere zero functions such that

(i) $\alpha(x) = \alpha(y)$ and $\beta(x) = \beta(y)$ if $x - y \in \mathbb{Z}^n$, and

(ii) α/β is an irrational constant.

Then the vector field $\alpha(x) \frac{\partial}{\partial x^1} + \beta(x) \frac{\partial}{\partial x^2}$ on \mathbb{R}^n descends to a vector field X on T^n. Find all functions $f : T^n \to \mathbb{R}$ such that $Xf = 0$.

Problem 3. An n-manifold is called parallelizable if one can find n vector fields which are linearly independent at each point.

(a) Prove that S^3 is parallelizable.

(b) Prove that $S^1 \times S^2$ is parallelizable.

(c) Prove that $S^1 \times S^n$ is parallelizable.

Hint: S^n is the unit sphere in \mathbb{R}^{n+1}, and \mathbb{R}^{n+1} is parallelizable.

Problem 4. Let M be a connected smooth manifold. Show that for any points $x, y \in M$, there is a diffeomorphism $f : M \to M$ such that $f(x) = y$.

Problem 5. View S^n as the unit sphere in \mathbb{R}^{n+1}; the restriction of the standard metric on \mathbb{R}^{n+1} makes S^n a Riemannian manifold. Consider the stereographic projection

$$x : U = S^n \setminus \{(0, \ldots, 0, 1)\} \to \mathbb{R}^n, \quad (p_1, \ldots, p_n, p_{n+1}) \mapsto \left(\frac{p_1}{1 - p_{n+1}}, \ldots, \frac{p_n}{1 - p_{n+1}}\right).$$

Write down the metric on U explicitly as $\sum_{i,j} g_{ij} dx^i \otimes dx^j$ in terms of these local coordinates.
HOMEWORK 4

Problem 1. Construct a vector field on \mathbb{R} whose integral curves through any point are only defined for finite time.

Problem 2. For any (smooth) vector field X and any (smooth) function f on a manifold M, prove

$$L_X(df) = d(L_X f).$$

Problem 3. Consider the vector fields on \mathbb{R}^3

$$X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z},$$
$$Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x},$$
$$Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}.$$

For any vector $v = (a, b, c) \in \mathbb{R}^3$, consider the vector field

$$W(v) = aX + bY + cZ.$$

(a) Prove that cross product corresponds to the Lie bracket,

$$W(u \times v) = [W(u), W(v)].$$

(b) Geometrically describe the flow of $W(v)$ in terms of v.

Problem 4. For a vector field X and an (l, k)-tensor field A, define the Lie derivative $L_X A$ as another (l, k)-tensor field so that

(i) for any two (l, k)-tensor fields A and B, we have $L_X (A + B) = L_X A + L_X B$;

(ii) for any two vector fields X and Y, we have $L_{X+Y} A = L_X A + L_Y A$;

(iii) for any (l, k)-tensor field A and (l', k')-tensor field B, we have $L_X (A \otimes A') = (L_X A) \otimes A' + A \otimes (L_X A')$;

(iv) if $C : T^k_l \to T^{l'-1}_{l-1}$ denotes any fixed contraction, we have $L_X (CA) = C(L_X A)$;

(v) for any vector fields X_1, \ldots, X_k and 1-forms $\omega_1, \ldots, \omega_l$, we have

$$L_X (A(X_1, \ldots, X_k, \omega_1, \ldots, \omega_l)) = (L_X A)(X_1, \ldots, X_k, \omega_1, \ldots, \omega_l)$$
$$+ \sum_{i=1}^{k} A(X_1, \ldots, L_X X_i, \ldots, X_k, \omega_1, \ldots, \omega_l)$$
$$+ \sum_{j=1}^{l} A(X_1, \ldots, X_k, \omega_1, \ldots, L_X \omega_j, \ldots, \omega_l).$$
If
\[A = \sum A_{i_1 \ldots i_k} \frac{\partial}{\partial x^{i_1}} \ldots \frac{\partial}{\partial x^{i_k}} \]

in local coordinates, then write down \(L_X A \) in local coordinates.

Problem 5. If \(f : M \to N \) is a surjective map that is regular everywhere and \(M \) is compact, then prove that \(f \) is a smooth fiber bundle.

Hint: It is enough to consider \(N = \mathbb{R}^n \). For the case \(N = \mathbb{R} \), construct the diffeomorphism \(f^{-1}(U) \cong f^{-1}(q) \times U \) by flowing along some vector field.